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Abstract

Lifting provides a simple method for constructing biorthogonal

wavelet bases. We generalize lifting to the case of multiwavelets, and

in so doing provide useful intuition about the additional degrees of

freedom made available in the construction of multiwavelets. We

show that any compactly supported multiwavelet transform can be

decomposed into a sequence of lifting steps. Finally, we compare

lifting to the two-scale similarity transform construction method.

1 Introduction

The recent work of Geronimo et al [5] has generated considerable interest

in multiwavelet constructions. In contrast to the scalar wavelet case, in

which all basis functions are generated from translations and dilations of

a single wavelet and scaling function, multiwavelet bases are constructed

from translates and dilations of a vector of wavelets and scaling function-

s. Allowing multiple prototypes for the basis elements provides additional

�Portions of this material were presented at the AMS Special Session on Wavelets

and Multiwavelets in January, 1997.
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degrees of freedom that can be used to construct basis functions with in-

teresting and useful properties. For example, in the scalar wavelet case,

no symmetric, orthogonal, and compactly supported bases exist apart from

the Haar basis and trivial variations. In contrast, the Geronimo-Hardin-

Massopust (GHM) multiwavelet basis, is symmetric, orthogonal, compactly

supported, continuous, and reproduces constant and linear functions.

The original construction of the GHM basis, using fractal interpolation

functions, is quite complicated. The goal of this paper is to provide a

simple method for constructing biorthogonal multiwavelet bases with pre-

scribed properties. We will show how to adapt lifting, a technique proposed

for constructing scalar wavelets by Sweldens in [25], for the construction

of multiwavelets. Lifting provides valuable intuition about the degrees of

freedom made available in the multiwavelet case, and it motivates some

new design criteria for using these new degrees of freedom e�ectively. As

an example we use the new degrees of freedom to obtain �ner control of

the tradeo� between length of support and vanishing moments. We al-

so show that all compactly supported biorthogonal multiwavelet bases can

be achieved by applying a �nite sequence of simple lifting steps to a sim-

ple initial basis. The result parallels that of [4], but there are additional

complications in the multiwavelet case that we discuss.

In the last secton, we will compare lifting to the two-scale similarity

transform. This is an alternative method of multiwavelet basis construction

that parallels Daubechies' spectral factorization method.

Independently developed presentations of lifting for multiwavelets can

be found in [6] and [15].

2 Lifting for Scalar Wavelets

Lifting is an iterative procedure for constructing biorthogonal wavelet bases.

The procedure takes a simple initial basis and, through successive modi�-

cations of the basis functions, �ne-tunes such properties as the number of

vanishing moments and the order of approximation. The canonical lifting

step involves either modifying the wavelets while holding the scaling func-

tions �xed or modifying the dual wavelets while holding the dual scaling

functions �xed. This cycle of modi�cations is repeated until the desired

basis properties are obtained.
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2.1 Notation

Let '(x) and  (x) be a scaling and a wavelet function, respectively, that

satisfy the recurrence relations

'(x) =
p
2
X
k2Z

hk'(2x� k)

 (x) =
p
2
X
k2Z

gk'(2x� k) (1)

and that generate a multiresolution analysis of L2. We will denote the dual

scaling function and dual wavelet functions by ~'(x) and ~ (x), respectively,

and their recurrence relation coeÆcients by ~hk and ~gk. The conditions of

biorthogonality can be expressed as

h'(x � k); ~'(x� l)i = Æ(k � l); h (x� k); ~'(x� l)i = 0;

h (x� k); ~ (x� l)i = Æ(k � l); h'(x � k); ~ (x� l)i = 0; (2)

for all k; l 2 Z.

For the recurrence coeÆcients hk, we de�ne the symbol h(z) by h(z) =P
k2Z hkz

�k. The symbols g(z), ~h(z), and ~g(z) are de�ned similarly. In

this paper, we focus exclusively on the contruction of compactly supported

biorthogonal bases. This means that only a �nite number of the coeÆcients

hk, ~hk, gk, and ~gk will be nonzero. The symbols therefore are polynomi-

als. (Here and elswhere in this paper, by polynomial we mean a Laurent

polynomial, i.e. a �nite series.)

2.2 Characterizing Families of Biorthogonal Wavelet

Bases

The theoretical motivation for lifting is a lemma due to Vetterli and Herley

[30] that provides a simple parametrization of all biorthogonal families with

�xed scaling function ' that satisfy perfect reconstruction conditions.

Lemma 1 (Vetterli-Herley) Suppose that f';  A; ~'A; ~ Ag and

f';  B ; ~'B ; ~ Bg are compactly supported families satisfying the conditions

of biorthogonality (2). Let fh(z); gA(z), ~hA(z), ~gA(z)g and fh(z), gB(z),
~hB(z), ~gB(z)g be the symbols for the corresponding recurrence coeÆcients.

Then, up to a monomial in z, we have

gB(z) = gA(z) + s(z2)hA(z) (3)

~hB(z) = ~hA(z)� s(�z�2)~gA(z)

~gB(z) = ~gA(z)

where s(z) has �nite degree.
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Figure 1: On the left we have a function f(x). Its resolution 0 approxima-

tion A0f(x) consists of a set of Diracs at unit intervals. In the center we

have the coarser resolution -1 approximation (the solid samples) together

with the resolution -1 wavelet coeÆcients (the dashed samples). On the

right we have the resolution -1 approximation and the modi�ed wavelet co-

eÆcients given by the prediction errors from a linear predictor. Note that

because f(x) is smooth and slowly varying, the prediction errors are small.

The Vetterli-Herley Lemma is a special case of Lemma 2 below, and we

defer the proof until later.

The Vetterli-Herley lemma provides a complete characterization of all

compactly supported wavelets that complement a �xed scaling function

'(x) in such a way that the resulting dual scaling and wavelet functions

are also compactly supported. Every �nite degree polynomial s yields a

new �nite biorthogonal �lter set. Note, however, that not all of these �lters

lead to biorthogonal functions: h and ~h must also satisfy some additional

constraints to ensure that well-behaved solutions exist to the recurrence

relations. The omitted monomial corresponds to a trivial change of basis

by replacing the wavelet functions by their integer translates and rescaling

them.

What is interesting about the lemma is its interpretation in the spa-

tial domain. Take an initial family f'A;  A; ~'A; ~ Ag. For a �xed scaling

function 'A, the possible wavelets are

 B(x) =  A(x) +
X
k2Z

sk'A(x � k): (4)

Thus, we can generate a new wavelet from an old by adding linear com-

binations of translates of the scaling function. Sweldens[25] calls such a

modi�cation of 'A a lifting step.



Multiwavelet Construction via the Lifting Scheme 5

2.3 Contruction of scalar wavelets by lifting

One can obtain useful intuition about lifting by considering an initial basis

derived from the degenerate set

'(x) =

�
1 x = 0

0 otherwise
 (x) =

�
1 x = 1

2

0 otherwise

~'(x) = Æ(x) ~ (x) = Æ(x� 1
2
):

(5)

The resolution j approximation of a function f(x) is given by Ajf(x) =P
hf(x); ~'jk(x)i'

j
k(x); here '

j
k(x) = 2j=2'(2jx � k) and ~'

j
k is de�ned sim-

ilarly. For this particular set of functions the approximation Ajf consists

of samples of f , with a sampling rate determined by j. We are sacri�cing

some rigor for the sake of insight here, and there are a few analytical com-

plications that we will note only in passing. For example, Ajf(x) converges

only weakly to f(x) and only when f(x) is suÆciently smooth. Further-

more, Ajf(x) is not even a function, but rather a distribution. Nevertheless,

this example is quite helpful in conveying the essence of lifting.

In our example, each step of the \wavelet transform" divides the samples

of the current resolution j approximation of f into samples at even points

(the \low-pass" coeÆcients) and odd points (the \high-pass" coeÆcients).

In typical applications of wavelets, the goal of the transform is to obtain

an eÆcient representation of a piecewise smooth function, i.e. we would

like to be able to approximate a given function accurately with a linear

combination of a small number of wavelets. The transform in our example

does not in general yield such an eÆcient representation (unless we have a

priori reason to assume that our function samples will be mostly zero).

If the function in question is smooth and slowly varying, we can form a

more eÆcient representation by using the even samples to predict the odd

samples. For example, we can use as a predictor a degree-N polynomial

�tted to a set of even coeÆcients surrounding the coeÆcient to be predict-

ed. Rather than keeping the odd samples, we keep the di�erence between

the odd samples and a prediction based on the even neighbors. Figure 1

illustrates this procedure.

The even and odd coeÆcients have the form hf(x); ~'(x � k)i and

hf(x); ~ (x � k)i, respectively. Replacing the odd coeÆcients with the d-

i�erences from their predicted values is equivalent to replacing ~ (x � k)

with ~ (x � k) �
P
ck ~'(x � k), where ck are the coeÆcients of the linear

combination of even samples used to predict the odd samples. Thus, we

see that this new, more eÆcient representation is obtained by performing a

lifting step on the dual wavelet. Applying a predictor that is exact (i.e. the

updated odd coeÆcients will all be zero) for polynomials of order up to N

corresponds to creating a new dual wavelet with N +1 vanishing moments.
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Performing a subsequent lifting step that adds vanishing moments to

the primal wavelet results in a low-pass �ltering of the even coeÆcients.

Performing several lifting steps corresponds to applying multi-level predic-

tion and yields a wider variety of wavelet bases. Daubechies and Sweldens

showed in [4] that any compactly supported biorthogonal wavelet basis can

be obtained (up to some translations and rescaling) by applying a �nite

number of lifting steps to the trivial Dirac basis described above.

3 The Motivation for Multiwavelets

Singularities play an important role in many signal processing application-

s. For example, discontinuities in the brightness function correspond to

edges in images. If we are to obtain a compact representation for functions

containing singularities, we need to pay close attention to the transform-

domain behavior of the singularities.

Wavelet bases with high approximation order are better able to approx-

imate smooth functions with a small number of terms than bases with lower

order. However, high approximation order comes at the price of longer sup-

port for the dual wavelet. When a predictor of order N is used, a wavelet

coeÆcient is negligible if the function is very nearly a polynomial of order

not greater than N over the entire support of appropriately translated and

dilated wavelet ~ . If it is not well-approximated by an order N polynomial,

the wavelet coeÆcient will be large. The wider the support of ~ is, the more

large coeÆcients will be generated by each singularity. To obtain compact

representation of a function with singularities we thus need to balance the

approximation order needed to eÆciently approximate smooth portions of

the function with the length of support that suÆciently localizes the sin-

gularities. The right balance depends on the smoothness of the function

and the prevalence of singularities. In image processing applications, the

balance is typically attained with two to four orders of approximation.

Consider our Dirac basis example. Because we are predicting odd coeÆ-

cients from even coeÆcients, each additional order after the second increases

the length of the support of the �lter by two. The tradeo� between �lter

length and order would be less severe if we were able to use both even

and odd coeÆcients for prediction. However, in general, using for predic-

tion even and odd coeÆcients simultaneously makes it diÆcult to invert

the transform. With a minor modi�cation to our lifting procedure, how-

ever, we can incorporate odd coeÆcients into the prediction process and

thereby gain more control over the tradeo� between support and order of

approximation.

We divide the samples we are trying to predict, the odd samples, into
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Available predictors
for wavelet case

Value to
predict

Available predictors

discontinuity

for multiwavelet case

Figure 2: Predicting a function sample near an edge in the wavelet case

and the multiwavelet case.

two classes: the samples with indices 4k+1 and those with indices 4k+3.

We �rst predict the points with indices 4k + 3 using both the even points

as well as the index 4k +1 points. Next we predict the points with indices

4k + 1 using the even points. The result, illustrated in �gure 2, is shorter

prediction window for the 4k + 3 predictor and no change for the 4k + 1

predictor.

The process of partitioning the points to be predicted into two sets

makes possible a better tradeo� between �lter length and order of approx-

imation for half of our coeÆcients. However, the result is two di�eren-

t dual wavelets and two di�erent primal scaling functions. The �rst set

of wavelets corresponds to using both the even samples and the 4k + 1-

indexed samples for prediction, and the second set corresponds to using

only the even-indexed samples for prediction. We have gone from a sys-

tem of biorthogonal wavelets to a system of biorthogonal multiwavelets. In

fact, as we will show, the only signi�cant di�erence between wavelets and

multiwavelets is the fact that we can predict wavelet coeÆcients with other

wavelet coeÆcients and we can predict scaling function coeÆcients using

other scaling functions coeÆcients.

In general, to construct a multiwavelet family with r di�erent scaling

functions, we subdivide our initial samples xk into 2r polyphase components

fxrk+n; k 2 Zg. Polyphase components with n even correspond to scaling

function coeÆcients. The odd components correspond to wavelet coeÆ-

cients. In performing prediction steps, we are free to use coeÆcients from

any of the other polyphase components. We will formalize this idea in the
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sections that follow.

4 Lifting for Multiwavelets

4.1 Notation

For multiwavelet bases, instead of one scaling function '(x) and one wavelet

 (x) we have a vector of r scaling functions (a multiscaling function),

�(x) = ['0(x) : : : 'r�1(x)]T and vector of r wavelet functions (a mul-

tiwavelet) 	(x) = [ 0(x) : : :  r�1(x)]T . These vectors satisfy recurrence

relations similar to (1):

�(x) =
p
2
X
k2Z

Hk�(2x� k)

	(x) =
p
2
X
k2Z

Gk�(2x� k): (6)

Here Hk and Gk are r � r real matrices and we assume that only a �nite

number of them is nonzero. We also have r vectors of dual scaling and

wavelet functions ~� and ~	, respectively, satisfying similar recurrence re-

lations with coeÆcients ~Hk and ~Gk. We now have matrix symbols H(z),
~H(z), G(z), and ~G(z), where H(z) =

P
k2ZHkz

�k, and so on.

The conditions of biorthogonality we can be also written in matrix no-

tation in a fashion reminding the similar equations in the scalar case:

h�(x� k); ~�(x� l)i = Æ(k � l)I ; h	(x� k); ~�(x� l)i = 0

h	(x � k); ~	(x� l)i = Æ(k � l)I h�(x � k); ~	(x� l)i = 0: (7)

Here, h : ; : i does not stand for a proper inner product. Rather, it is a vector
generalization of the L2 inner product, hf (x); g(x)i =

R
f (x)(g(x))� dx (�

denotes the ordinary conjugated transpose). The value yielded thus is an

r � r matrix.

4.2 Characterizing Families of Biorthogonal

Multiwavelet Bases

As in the scalar case, we obtain a simple characterization of the set of

multiwavelet bases that are biorthogonal to �xed multiscaling function. Our

characterization generalizes the Vetterli-Herley lemma, and as in the scalar

case, we will use this lemma as the starting point for basis construction

using lifting.
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As a preliminary, we de�ne T y(z) to be the paraconjugated transpose of

T , T y(z) = (T (�z�1))�. If T (z) =
P

k2Z T kz
�k, then T y(z) =

P
k2Z

~T
�
kz

k,

where � denotes the ordinary conjugated transpose. Note that the para-

conjugated transpose coincides with the ordinary conjugated transpose on

the unit circle.

Lemma 2 Suppose we have two compactly supported multiwavelet families

that satisfy the conditions of biorthogonality and that share a multiscaling

function �. Denote the families f�;	A;
~�A;

~	Ag and f�;	B ;
~�B ;

~	Bg.
Let fH(z);GA(z); ~HA(z); ~GA(z)g and fH(z); GB(z); ~HB(z); ~GB(z)g be

the symbols for the recurrence relations for these functions. Then

GB(z) = T (z2)(GA(z) + S(z
2)HA(z)))

~HB(z) = ~HA(z)� Sy(z2) ~GA(z)

~GB(z) = (T y(z2))�1 ~GA(z); (8)

where S(z) and T (z) are of �nite degree and the determinant of T (z) is a

monomial.

As in the scalar case, the lemma has a straightforward interpretation in

the spatial domain. When T (z) is the identity, we simply obtain a vector

analog of (4). Namely, we have 	B(x) is 	A(x) plus a linear combination

of multiscaling functions. Because S(z) is not necessarily diagonal, the

components of 	B(x) can all be built from di�erent linear combinations

of scaling functions, which gives us some new (but not very interesting)

degrees of freedom in our construction.

An important di�erence between scalar wavelets and multiwavelets

comes from nontrivial values of T (z). We have the restriction that T (z)

is of �nite degree and has a monomial determinant. We will call such ma-

trices unimodular. From Cramer's rule, we see that it implies that T (z)

is invertible and that T�1(z) is also of �nite degree. The inverse must be

�nite so as the resulting dual wavelet fuctions were compactly supported.

The allowable modi�cations to 	 thus consist of a vector lifting step that is

similar to that for scalar wavelets followed by a �nitely invertible intermix-

ing of the di�erent wavelet components of 	. In scalar case, where there is

only one scaling function, the only such possible intermixing is choosing a

di�erent translate for a prototype and recaling it. T (z) corresponds to the

monomial omitted in (3).

In the example in Section 3, we split our samples into four polyphase

components. Predicting the odd samples from the even corresponds to

the wavelet case. Using two di�erent predictors that use even samples to

predict the odd, one for the 4k + 1-indexed coeÆcients and one for the
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4k + 3-indexed coeÆcients, corresponds an application of Lemma 2 with

T (z) = I . Our use of both even samples and 4k + 1-indexed samples to

predict the 4k+3-indexed samples corresponds to using a nontrivial T (z),

as we are using wavelet coeÆcients to predict other wavelet coeÆcients.

The constraint of unimodularity on T (z) is ensures that the transform will

be invertible.

Before we prove Lemma 2, we introduce the polyphase representation,

which will simplify the proof.

4.3 The Polyphase Representation

The polyphase representation[28] provides a more compact way of describ-

ing the mechanics of lifting. In the polyphase representation, the conditions

of biorthogonality (2) and (7) are expressed in terms of a simple maxtix

product. A lifting step is equivalent to performing an elementary matrix

operation on each of the matrices in this product.

We de�ne the even and odd polyphase componentsHe(z) andHo(z) for

the recurrence coeÆcients Hk by

He(z
2) =

1

2
[H(z) +H(�z)]; Ho(z

2) =
z

2
[H(z)�H(�z)]:

The polyphase components for the other recurrence coeÆcients Gk, ~Gk,

and ~Hk are de�ned similarly. The polyphase matrix P (z) is then given by

P (z) =

�
He(z) Ho(z)

Ge(z) Go(z)

�
=
X
k2Z

�
H2k H2k+1

G2k G2k+1

�
z
�k
: (9)

If the recurrence relations (1) are uniquely satis�ed by compactly sup-

ported scaling functions '(x) and ~'(x), it it is straightforward to show that

the conditions of biorthogonality will be satis�ed if and only if the perfect

reconstruction condition

P (z) ~P
y
(z) = I (10)

is satis�ed [20] for any z 2 C n f0g.
The perfect reconstruction condition has a lot of applications. For ex-

ample, it shows that to given primal symbolsH(z) and G(z) there exists a

unique pair of dual symbols ~H(z) and ~G(z) and, once the primal symbols

are known, the dual ones can be computed by inverting and transposing

the polyphase matrix and recombining the symbols from its entries. It also

implies that, if both P (z) and ~P (z) are to be of �nite degree, they must

be unimodular.

In this paper we will focus only on the problem of generating symbol-

s that satisfy the perfect reconstruction conditions (10). Characterizing
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the conditions under which recurrence relations satisfying (10) converge is

addressed in [3, 2, 9, 10, 18]).

4.4 Proof of Lemma 2

To prove Lemma 2, we must show that there exists a �nite-degree matrix

S(z) and a unimodular matrix T (z) that satisfy

PB(z) =

�
I 0

0 T (z)

��
I 0

S(z) I

�
PA(z): (11)

We have

PA(z) =

�
He(z) Ho(z)

GA;e(z) GA;o(z)

�
; PB(z) =

�
He(z) Ho(z)

GB;e(z) GB;o(z)

�
:

Since both sets satisfy the perfect reconstruction conditions, that is,

PA(z) ~P
y
A(z) = PB(z) ~P

y
B(z) = I

and the upper half of PA(z) and PB(z) are the same, we have

PB(z) ~P
�

A(z
�1) =�

I 0

GB;e(z) ~H
y

A;e(z) +GB;o(z) ~H
y

A;o(z) GB;e(z) ~G
y

A;e(z) +GB;o(z) ~G
y

A;o(z)

�
:

(12)

Now PB(z) ~P
�
A(z

�1) must be unimodular because PA and PB are both

unimodular. Since det(PB(z) ~P
y
A(z)) is equal to the determinant of its

lower right block, we have

T (z) =GB;e(z) ~G
y
A;e(z) +GB;o(z) ~G

y
A;o(z)

is also unimodular. Let

S(z) = T (z)�1(GB;e(z) ~H
y
A;e(z) +GB;o(z) ~H

y
A;o(z)):

Factoring the matrix on the right hand side of (12) and multiplying both

sides of the equation by ~PA(z), we obtain (11). Now,

~PB(z) = (P
y
B(z))

�1 =

�
I 0

0 (T y(z))�1

� �
I �Sy(z)
0 I

�
~PA(z):

The rest of the statement is obtained by extracting the polyphase compo-

nents and recombining them to form the symbols.
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We point out here that it is also true that any matrix polynomial S

and any unimodular matrix polynomial T de�ne via equations (8) symbols

GB(z); ~HB(z); ~GB(z)g such that the corresponding polyphase matrices

PB(z) (created from H(z) and GB(z)) and ~PB(z) satisfy the perfect re-

construction condition.

4.5 New Degrees of Freedom

To better understand the new degrees of freedom we obtain from going

from scalar wavelets to multiwavelets, we now consider the e�ects of di�er-

ent types of simple lifting steps, that is, lifting steps involving using a single

polyphase component of a signal to predict another polyphase component.

Each simple lifting step has the e�ect of multiplying the polyphase matrix

from the left hand side by a matrix with unit diagonal and a single nonze-

ro o�-diagonal entry. There are four classes of simple lifting steps which

correspond to adding linear combinations of wavelets/scaling functions to

a wavelet/scaling function. The location of the non-zero o�-diagonal term

determines the class.

The e�ect of a simple lifting step with the o�-diagonal term in the lower

left/upper right quadrant is to add a linear combination of primal/dual

scaling functions to a primal/dual wavelet. These types of lifting step are

simple extensions of scalar lifting steps.

The simple lifting steps with their non-zero terms in the lower right or

upper left quadrants have no analog in the scalar wavelet case. A lifting step

with nonzero term in the lower right quadrant adds a linear combination of

the translates of a primal/dual wavelet to a di�erent primal/dual wavelet.

A lifting step with nonzero term in the upper left quadrant corresponds

to predicting one set of scaling function coeÆcients using a di�erent set of

coeÆcients. The e�ect on the functions of such a prediction is much more

complicated than in the wavelet case because the scaling functions appear

on both sides of the recurrence relations. In general, all scaling functions are

modi�ed as a result of this type of lifting step, and the new wavelets are the

solutions of a di�erent set of recurrence relations. Simply adding a linear

combination of the translates of one of the scaling functions to another

scaling function (or any change of basis in the approximation spaces, for

that matter) can be expressed as a two scale similarity transform in which

the scaling symbol is multiplied by mutually related factors from the left

and the right hand side. We discuss the two-scale similarity transform in

section 6.
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4.6 Factoring Multiwavelet Transforms into Lifting

Steps

We can decompose any compactly supported biorthogonal multiwavelet

transform into a �nite sequence of simple lifting steps and a rescaling step.

Sometimes it may be useful to allow besides lifting steps and rescaling also

permutations in the factorization. They are not necessary, but they may

help to reduce the overall number of factors. A constructive proof can be

obtained by extending the derivation of [4] to polyphase matrices larger

than 2�2 or by adapting the factorization used to place a matrix in Smith-

McMillan form, which is well known in engineering circles, see e.g. [28].

In general, there are numerous ways to factorize a polyphase matrix

into simple lifting steps. We can narrow the range of choices by introduc-

ing a canonical form that groups together lifting steps of the same kind.

The result is that we can obtain any set of biorthogonal multiscaling func-

tions and multiwavelets by starting from a basis de�ned by a polyphase

matrix of the form

�
T 1(z) 0

0 I

�
, where T 1(z) is unimodular. We �rst

successively apply lifting steps to primal and dual wavelet functions, each

time using only the scaling functions to alter them, not the other wavelets.

When we reach the desired multiscaling functions, we �nish by combining

wavelet functions only, among themselves. Having a factorization with less

redundancy and a rigid pattern of lifting steps is helpful particularly when

a factorization based parameterization is used in �lter design by numerical

optimization as in [11] or [27].

Theorem 3 A polyphase matrix P (z) corresponding to compactly support-

ed biorthogonal multiwavelets can be expressed in the form

P (z) =

�
I 0

0 T 2(z)

��
I 0

SK(z) I

� �
I WK(z)

0 I

�
� � � (13)

: : :

�
I 0

S1(z) I

� �
I W 1(z)

0 I

��
T 1(z) 0

0 I

�
:

Here, Sk(z) and W k(z), k = 1; : : : ;K are of �nite degree. The diagonal

blocks Tm(z), m = 1; 2, are unimodular and therefore

Tm(z) =Dm(z)Lm;Nm(z)Um;Nm(z) � � �Lm;1(z)Um;1(z); (14)

where Lm;n(z) and Um;n(z) are also of �nite degree, lower and upper tri-

angular, respectively, with ones on the diagonal and Dm(z) are diagonal

matrices with monomials on the diagonal.
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Proof. We �rst note that by grouping adjacent upper/lower triangular

simple lifting factors together, we can factor any unimodular matrix P (z)

into

P (z) =D(z)LK(z)UK(z) � � �L1(z)U 1(z)

where Uk(z) and Lk(z) are upper and lower triangular polynomial ma-

trices, respectively, with ones on the diagonal and D(z) is diagonal with

monomials on the diagonal. We next partition each of the triangular factors

into four r� r blocks and factor out the diagonal blocks of each as follows:�
L1;1(z) 0

L2;1(z) L2;2(z)

�
=

�
L1;1(z) 0

0 I

��
I 0

L2;1(z) I

��
I 0

0 L2;2(z)

�
:

Notice that the diagonal blocks are unimodular (i.e., they have a polynomial

inverse). We can move the block diagonal matrices to the ends of the

factorization using the relation�
A(z) 0

0 B(z)

��
I 0

S(z) I

�
=

�
I 0

B(z)S(z)A(z)�1 I

��
A(z) 0

0 B(z)

�

and similar relations for upper triangular matrices. The diagonal matrices

with monomials on the diagonal can be moved in the same way.

We conclude with the observation that when the primal polyphase ma-

trix is factored into lifting steps, obtaining the dual polyphase matrix (and,

from there, the dual �lters and functions) is easy. From the perfect re-

construction condition (10), the dual polyphase matrix is a paraconjugated

transpose of the inverse of the given polyphase matrix. The inverse of each

simple lifting factor is the factor itself, only its nonzero o�-diagonal entry

has the opposite sign. Via the decomposition into simple lifting factors,

formulas for the inverses of factors in (13) and (14) can be derived.

5 Adding Vanishing Moments with Lifting

5.1 Moments of wavelet functions

One particularly attractive property of lifting is that it provides a sim-

ple means to construct multiwavelet bases with prescribed approximation

order. We may start, for example, with the Dirac basis ~'1(x) = Æ(x);

~'2(x) = Æ(x � 1
2
), ~ 1(x) = Æ(x � 1

4
), ~ 2(x) = Æ(x � 3

4
), for which the

polyphase matrix is given by

~P (z) =

2
664

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

3
775 (15)
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and successively add vanishing moments to the dual and primal wavelets

until the requisite order of approximation is reached. The following result

is central to our construction procedure.

Theorem 4 Let �, 	, ~�, and ~	 be multiscaling and multiwavelet func-

tions giving rise to a biorthogonal multiresolution analysis for L
2
. Suppose

the multiwavelet 	 has n vanishing moments, i.e.,
R
	(x)xpdx = 0; p =

0; : : : ; n�1. If we apply a lifting step to modify ~	, then the resultant 	new

has also n vanishing moments.

Proof. The idea is a simple one. Because the original primal wavelets have

n vanishing moments, the dual scaling functions must have approximation

order n. The lifting step changes 	k(x) as well as the primal wavelets and

scaling functions, but it does not change the dual scaling functions. Hence,

after the lifting step the dual scaling functions still have approximation

order n, which means that the new primal wavelets must have n vanishing

moments.

Because of this theorem, we can add vanishing moments to the primal

and dual wavelets in stages. We �rst add moments to the dual wavelets,

then to the primals, then to the duals, and so on. We require the following

expression for the moments so that we can cancel them out.

Lemma 5 Let M�;n =
R
�(x)xndx and M	;n =

R
	(x)xndx. Then we

have

M�;n =

nX
j=0

X
k2Z

Hk

�
n

j

�
k
jM�;n�j (16)

M	;n =

nX
j=0

X
k2Z

Gk

�
n

j

�
k
jM�;n�j (17)

Constructing a basis with speci�ed numbers of vanishing moments is

now a straightforward procedure. We choose an initial wavelet w0(x) to

modify, where w0(x) is either a primal or dual wavelet. We then choose a

set of k translates of scaling and wavelet functions w1(x); : : : ; wk(x) that we

will use to modify the function w0(x) via a lifting step. Our new function

will be

w
new
0 = w0(x) �

kX
i=1

ciwi(x): (18)

The coeÆcients ci are chosen so that the modi�ed function has k vanishing

moments, i.e. so that
R
w
new
0 (x)xndx = 0 for 0 � n < k. The coeÆcients



16 Davis, Strela, and Turcajov�a

ci satisfy the linear system Mc =m0, where M is the k � k matrix with

entriesMi;j =
R
wjx

i
dx andm0 is the vector with entriesm0;i =

R
w0x

i
dx.

We repeat this lifting procedure for primal and dual wavelets until we

obtain a basis with a prescribed number of vanishing moments. We can gen-

erate a variety of bases by varying the order in which we add the vanishing

moments and by varying the functions we use for moment cancelation in

each lifting step. We can start from a Dirac basis and generate a new basis

altogether or we can modify an existing basis. More general procedure of

increasing the approximation order within lifting framework is considered

in [12]

As an example of this lifting procedure, we take an initial Dirac basis and

use lifting to add four vanishing moments to the primal and dual wavelets.

In our �rst lifting step we use both wavelets and scaling functions to add 4

vanishing moments to the wavelet ~ 1(x):

~ new1 (x) = ~ old1 (x) +
1

6
~ 2(x+ 1)�

2

3
~'1(x)�

2

3
~'2(x) +

1

6
~ 2(x) (19)

The use of wavelets in the lifting step is possible because we are constructing

multiwavelets rather than scalar wavelets.

For the second lifting step we use scaling functions only to add 4 van-

ishing moments to the wavelet ~ 2(x):

~ new2 (x) = ~ old2 (x)+
1

16
~'1(x)�

9

16
~'2(x)�

9

16
~'1(x�1)+

1

16
~'2(x�1) (20)

We cannot use ~ new1 (x) in this step because we have already cancelled its

�rst 4 moments, and we will obtain a singular system of equations to solve.

We add four vanishing moments to the primal wavelets using the primal

scaling functions as follows:

 
new
1 (x) =  

old
1 (x) + 427499

18951168
'2(x+ 1)� 285847

1018880
'1(x)�

25339447
94755840

'2(x) +
802601
31585280

'1(x� 1)

 
new
2 (x) =  

old
2 (x) + 278449

3740160
'1(x)� 19774217

78543360
'2(x)�

1967613
8727040

'1(x� 1) + 1090837
15708672

'2(x� 1)

As we discuss below, there are important advantages to using scaling func-

tions only for the lifting of the primal wavelets.

The result of our lifting is a biorthogonal basis that has 4 vanishing

moments in both the primal and dual wavelets. Our use of both wavelets

and scaling functions in the lifting steps has given us better control of the
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Figure 3: Biorthogonal scaling functions and wavelets constructed via lift-

ing

tradeo� between analysis �lter length and number of vanishing moments

than in the wavelet case. The dilation coeÆcients of the constructed basis

can be found at http://www.mcs.drexel.edu/�vstrela.
The basis we have constructed is very similar to the order 4 Deslauriers-

Dubuc wavelet basis. The sole di�erence is that in the wavelet case the �rst

lifting step uses only scaling functions to add vanishing moments to the d-

ual wavelet. The result of our using the wavelets for the �rst lifting step is

that we shorten one of the analysis �lters. The �lter for ~ 1(x) has length 5

and that for ~ 2(x) has length 7, whereas the analysis �lter in the wavelet

case has length 7. The shorter �lter length leads to a comparable reduction

in the length of the support of the wavelets. The length of the supports of
~ 1(x) and ~ 2(x) (estimated numerically) are 3.6 and 4.2, respectively, com-

pared to the width 4.4 Deslauriers-Dubuc wavelet. Note, however, that the

practical import of this reduction of support is tempered by the fact that

most of the reduction in support takes place in a region where the wavelet ~ 

is nearly zero. We obtain an alternative measure of the spread of the func-

tions by the variance 1
kfk2

R
(x � �)2jf(x)j2dx, where � = 1

kfk2
R
xjf j2dx.

We �nd that our reduction in support comes at the price of a slight increase

in the variance.

5.2 Pre�ltering

In most applications one is given a set of function samples to transform

rather than a set of scaling function coeÆcients as is assumed by the trans-

form. The working assumption in the scalar wavelet case is usually that the

scaling function coeÆcients are approximately equal to the given function
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samples. Such a map from function samples to scaling function coeÆcients

is much less natural in the multiwavelet case. When the multiscaling func-

tions di�er signi�cantly, a direct mapping of samples to coeÆcients intro-

duces high-frequency artifacts. The problem of approximating multiscaling

function coeÆcients from a given set of samples has been the object of a

number of recent papers [32, 24, 13, 31, 29, 7, 1]. Lifting provides a way to

construct families of multiwavelets for which such preprocessing reduces to

a simple polyphase split.

Consider the scaling function coeÆcients for a smooth function f(x).

Expanding f(x) into a Taylor series, we obtain

Z
f(x) ~'(x� k)dx =

Z
[f(k) + xf

0(k) +
1

2!
x
2
f
00(k) + : : :]'(x)dx(21)

=
X 1

j!
f
(j)(k)M ~';j (22)

where M ~';j is moment j of ~', given by M ~';j =
R
x
j ~'(x)dx. When ~'(x)

has zero moments for j = 1; : : : ; n, we can approximate h ~'(x� k); f(x)i by
the sample f(k) provided f is suÆciently smooth. Such a scaling function

is said to have the Coiet property.

The following lemma allows us to construct multiwavelets with scaling

functions having the Coiet property.

Lemma 6 Let �(x), 	(x), ~�(x), and ~	(x) be multiscaling and multi-

wavelet functions that give rise to a biorthogonal multiresolution analysis

for L
2
. Suppose the wavelets ~	(x) have n vanishing moments. If we modify

	(x) via a lifting step that involves only translates of the scaling functions

�(x), we do not change the �rst n moments of the functions ~�(x).

Proof. Lifting 	 using only translates of scaling functions results in a

modi�ed function of the form 	new(x) = 	(x) +
P

kAk�(x � k). From

the perfect reconstruction condition (10) it follows that ~H
new

k = ~Hk +P
lA

�
l
~Gk+2l. From Lemma 5 we have

M
new
~�;p

=

p
2

2

pX
j=0

X
k

( ~Hk +
X
l

Al
~Gk+2l)

�
p

j

�
k
jM

new
~�;p�j (23)

Suppose p � n � 1. Using (17) we can express the terms in ~Gk as linear

combinations of the moments M ~	;i, i � j � p � n � 1. Because these

moments are all zero, we have that Mnew
�;p and M�;p satisfy the same

equations and hence must be equal.
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6 The Two-Scale Similarity Transform

As we discussed in section 4.5, one of the important new freedoms we

obtain in constructing multiwavelets rather than wavelets is that we can

use scaling function coeÆcients to predict other scaling function coeÆcients.

Unlike when we predict wavelet coeÆcients, the new scaling functions are

not simply a linear combination of the old. The result of the new prediction

is to modify the recurrence relations for the new scaling functions, and there

is no simple way to express the e�ects of this modi�ction.

We now consider the process of creating new scaling functions from a

linear combination of the old ones. Let �(x) be a scaling vector satisfying

the recurrence relation (1). We want to examine the modi�ed scaling vector

�new(x) =
P

kMk�(x � k). When M(z) is invertible for all jzj = 1, the

new scaling vector satis�es

�̂
new

(!) =M(ei!)�̂(!) =
p
2
2
M(ei!)H(ei

!

2 )�̂(!
2
) =

p
2
2
M (ei!)H(ei

!

2 )M�1(ei
!

2 )�̂
new

(!
2
):

(24)

From this we obtain

H
new(z) =

1

2
M (z2)H(z)M�1(z): (25)

This modi�cation ofH(z) is called a two-scale similarity transform (TST),

and such transforms are studied in detail in [22, 19].

Matrices M(z) that are invertible for all jzj = 1 do not change the

approximation order of the scaling vector [22]. However, one can show if

M(z) is singular in a special way, something more interesting happens: one

can use a two-scale similarity transform to increase the approximation order

of the scaling vector [17]. We emphasize that the scaling vectors that arise

from this kind of degenerate TST do not correspond to linear combinations

of the old functions, however. The result follows:

Theorem 7 Suppose that the matrix symbolHp(z) provides approximation

order p, and that Hp(1)rp = rp. Let Mp(z) be a matrix polynomial such

that det(Mp(z)) = const � (1 � z) and Mp(1)rp = 0. Then the symbol

Hp+1(z),

Hp+1(z) =
1

2
Mp(z

2)Hp(z)M
�1
p (z) (26)

provides approximation order p+ 1.

For scalar wavelets, the number of factors of (1 + z) in the symbol for

the scaling function corresponds to the approximation order of the scal-

ing function. The matrices M in the degenerate two-scale transforms are

analogs of these factors of (1 + z).
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Strela have developed an alternative method for constructing

biorthogonal multiwavelet bases using degenerate two-scale similarity trans-

forms [21]. In the TST construction method, approximation order condi-

tions are automatically satis�ed, but we must solve a system of equations

to ensure that the perfect reconstruction condition is satis�ed. In contrast,

for each step of lifting, the perfect reconstruction condition is satis�ed, but

we must solve a system of equations to obtain a particular approximation

order.

The two-scale similarity transform method generalizes a method for

scalar wavelet construction described by Daubechies in [3]. Like lifting, two-

scale similarity method is based on the factorization of a matrix polynomial.

However, rather than focusing primarily on spatial-domain considerations,

we instead focus on the distribution of a set of matrix factors related to

the factors of (1 + z) in the scalar case. The basic idea is to construct an

initial set of scaling functions with a high approximation order. We then

�nd a set of dual scaling functions that satisfy the perfect reconstruction

conditions. We next shift some of the approximation orders from the primal

scaling functions to the duals via a procedure called balancing. The result

is a primal and dual scaling vector with speci�ed approximation orders.

Finally, we �nd a set of primal and dual wavelets that satisfy the perfect

reconstruction conditions.

Theorem 7 provides an easy way to construct a symbol with a given

approximation order p:

Hp(z) =
1

2p
Mp(z

2) : : :M 1(z
2)H0(z)M

�1
1 (z)M�1

p (z)

After this is done a dual symbol ~H0(z) has to be found that satis�es the

perfect reconstruction condition (10). We then perform balancing, trans-

ferring moments from the primal symbol to the dual in order to ensure

the approximation properties of the dual basis. Finally, we solve for a set

of primal and dual wavelet symbols that satisfy the perfect reconstruction

condition.

Figure 4 shows the dual and primal scaling functions and wavelets

constructed using a two-scale similarity transform method that parallel-

s the construction of Section 5.1. The details may be found online at

http://www.mcs.drexel.edu/�vstrela. Unlike the functions we con-

structed in our lifting example in Section 5.1, all the two-scale similar-

ity transform functions are either symmetric or antisymmetric. Special

symmetric lifting factors described in [26] would have had to be used to

achieve similar symmetry properties by lifting. It can be proved that the

Sobolev exponents for �(x) and ~�(x) are smax = 1:1309 and smax = 3:5,

respectively. The obtained scaling vectors are slightly smoother than those
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Figure 4: Biorthogonal scaling functions and wavelets constructed via two-

scale similarity method

constructed in Section 5, which have primal and dual Sobolev exponents

smax = 1:1157 and smax = 2:7080. The synthesis �lter in the two-scale case

is shorter than in the lifting case, but the analysis �lter is longer.

Although the e�ects of lifting on the scaling vectors is more diÆcult to

describe than in the two-scale case, the overall construction procedure is

much simpler.

7 Conclusion

Lifting provides a simple way of constructing biorthogonal multiwavelet

bases with a given approximation order. Equally importantly, it provides

valuable intuition as to the source of the new degrees of freedom available

in the construction process: with multiwavelets, we can use wavelet coeÆ-

cients to predict other wavelet coeÆcients, and we can use scaling function

coeÆcients to predict other scaling function coeÆcients. Moreover, as in

the wavelet case, lifting steps provide a universal construction procedure

for compactly supported multiwavelet bases.
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