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ABSTRACT

We describe a joint source/channel allocation scheme for transmitting images lossily over block erasure chan-

nels such as the Internet. The goal is to reduce image transmission latency. Our subband-level and bitplane-level

optimization procedures give rise to an embedded channel coding strategy. Source and channel coding bits are

allocated in order to minimize an expected distortion measure. More perceptually important low frequency

channels of images are shielded heavily using channel codes; higher frequencies are shielded lightly. The result

is a more e�cient use of channel codes that can reduce channel coding overhead. This reduction is most pro-

nounced on bursty channels for which the uniform application of channel codes is expensive. We derive optimal

source/channel coding tradeo�s for our block erasure channel.
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1 INTRODUCTION

With the rising popularity of Web browsers, image transmission has become one of the largest uses of Internet

bandwidth [5]. Responsiveness is essential in interactive applications such as browsers, even more so than perfect

image �delity, since many images have already been distorted by lossy compression techniques.

The standard method for transmitting images over the Internet is to �rst apply a lossy subband-based com-

pression scheme such as JPEG and to then transmit the compressed images across the intrinsically lossy Internet

using the automatic repeat request (ARQ) based TCP/IP protocol. While ARQ-based protocols transmit images

losslessly, the resulting packet retransmissions can lead to excessive transmission delays in networks with high

latency. ARQ-based protocols are also ill-suited for multicasting applications. Because losses experienced by

di�erent multicast recipients will in general be di�erent, retransmission of lost packets becomes impractical.

An alternative strategy is to apply forward error correction (FEC) to packets. Forward error correction must

be applied with care, however, since the added redundancy increases network loads and can in some cases actually

degrade overall network performance [3].



In this paper we consider the problem of how to make the most e�cient use of forward error correction for

transmission of images over lossy packet networks. We examine and compare three basic strategies: the uniform

application of channel codes, a joint optimization the distribution of source and channel codes, and the utilization

of robust encodings. In each case we provide motivation based on optimal information-theoretic considerations.

1.1 Related Work

A number of redundant lossy packet transmission schemes have been examined for images and video. The

algorithms of [23] and [12] make use of naturally occurring redundancy within images to recover from packet

losses. The number of losses that can be sustained is highly image dependent in this case, and only limited

compression can be used. Our allocation schemes allow for precise control of the distribution of redundancy.

The Priority Encoding Transmission (PET) scheme [1][13] allows the user to set di�erent levels of error

protection for di�erent portions of the MPEG stream, but unlike this paper provides no explicit mechanism

for allocating these levels. Layered transmission schemes such as [8][15] incorporate similar ideas, but require

networks which treat packets di�erently according to their priorities. Our allocation scheme can be used with

any network supporting a simple datagram protocol.

Our contribution is to provide a simple, low-complexity mechanism for obtaining an optimized partitioning of

bits between image quantization and redundancy for a given set of image transform quantizers, an error correction

scheme, and a packet loss model. We analyze the asymptotics of this tradeo� and show connections between our

methodology and existing work on vector quantization for noisy channels.

2 OPTIMAL TRADEOFF BETWEEN SOURCE AND CHANNEL

CODING

2.1 Asymptotic Results

The problem we will address is that of transmitting images as collections of b bit packets over a lossy network.

The class of protocols we consider has two important properties. First, packets may be delivered out of order,

so each packet contains a unique identi�er. Second, the contents of all packets are veri�ed during transmission.

Thus our channel is essentially a block erasure channel for which b bit erasures occur only at packet boundaries.

To simplify our analysis we will �rst consider independent packet erasures that occur with a constant proba-

bility 1 � p. We will examine more realistic models of Internet loss behavior below. Furthermore, we will limit

our attention to forward error correction in the form of linear block codes.

Suppose we wish to transmit n samples of an independent, identically distributed (i.i.d.) process over a lossy

packet network using N packets. We desire that the total expected error, both from packet erasures and from

quantization, be minimized. Clearly there is a tradeo� between source and channel coding. If we increase the

number of bits devoted to error correction, we increase the probability of receiving a message correctly, but we

lose quantizer resolution. In the extreme case we send no information, but it is received with perfect �delity.

On the other hand, increased quantizer resolution comes at the expense of increased probability of uncorrectable

erasures.

In this section we estimate the rate at which some speci�c source and channel coding strategies approach

the asymptotic limits imposed by channel capacity. We use our estimates to derive an asymptotically optimal



tradeo� between source and channel coding for high rates. We then use our estimates to motivate approaches

to improving transmission rates in more practical regimes. For our analysis we assume that source coding is

performed using an optimal n dimensional vector quantizer and that channel coding is performed using (N; k; d)

block codes that are optimal in the sense that they achieve the Singleton bound, d � N �k+1. In addition, these

codes allow us to approach the channel capacity arbitrarily closely for N su�ciently large and with su�ciently

large packets. We discuss the implementation of such optimal codes, called maximum distance separable (MDS)

codes, in the next section.

Let r be the fraction of bits devoted to source coding and let R be the number of bits per sample. In our

framework we have rR = rNb

n
bits per sample available for source coding and (1 � r)R bits per sample devoted

to channel coding. Our channel codes permit the correction of up to (1� r)N erasures. Our goal is to minimize

the expected squared error of our received signal by choosing an optimal r. For simplicity, we will use a squared

error distortion measure, and we will take our signal to be n samples of an i.i.d. mean 0 Gaussian source with

variance �2. The calculations below may be generalized in a straightforward manner to non-Gaussian sources as

well as to errors of the form d(x; x̂) = kx � x̂k� where the norm is the standard l2 norm. Our development is

motivated by related estimates of.11

We obtain the quantization error for our source using Zador's estimate [25][9]. For high rates, the average

squared quantization error per symbol for an optimal n dimensional vector quantizer using rR bits per sample is

given by

D(r) = 2�e�2B(n; 2)2�2Rr (1)

where B(n; 2) is a packing constant satisfying
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and !n is the volume of the n-dimensional unit sphere.

We obtain a complete quantized vector whenever there are (1�r)N or fewer erasures. Let p be the probability

that a single packet is lost. The number of packets successfully transmitted has a mean of Np and a variance

s2 =
p(1�p)

N
. For N large, we use the central limit theorem to estimate the probability P (r) of a transmission

failure,

P (r) �
Z
1

p�r

s

e�x
2

dx: (3)

For now we assume that all data is lost if there are any unrecoverable packet errors. A number of recently

developed image compression techniques, such as Shapiro's EZW scheme [19], are extremely sensitive to erasures,

so this is not an entirely unreasonable distortion model. We will consider better decoding strategies below in

section 3.4. The expected squared error per-sample under these assumptions is

E(D) = P (r)�2 + (1� P (r))D(r): (4)

We now �nd the optimal tradeo� between source and channel coding for large numbers of samples n. We will

keep R, the total number of bits per sample, �xed as we take n to in�nity.

When R and n are su�ciently large we have either P (r) << 1 or D(r) << �2 (or both). For the high rate

case, then, we ignore the P (r)D(r) term in E(D) and examine the sum (actually an upper bound on E(D)) given

by

E(D) � P (r)�2 +D(r): (5)

Setting the r derivative of (2.1) to 0 and taking the log, we �nd for large N that

(p� r)2 = 2p(1� p)
1

N

(
ln(
p
N ) � ln

" p
2�
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#
+ 2 ln(2)Rr � ln [4�e ln(2)B(n; 2)R]

)
: (6)



For N su�ciently large the right hand side is dominated by the ln(N ) term, and we �nd that distortion is

minimized for

r � p�

r
p(1� p)

lnN

N
: (7)

For this rate we have

D(r) � �22�2Rr: (8)

Related results for the binary symmetric channel may be found in [11].

We see that as N tends to in�nity, r tends to the channel capacity, p, and the overall distortion tends to the

rate-distortion curve for a set of i.i.d. Gaussian samples. Even away from the asymptote, when N is su�ciently

large the dependence of the tradeo� parameter r on the overall rate R becomes negligible. If our goal is to encode

realizations of a collection of independent mean zero Gaussian sources, rather than a single Gaussian source, then

for large N the optimal solution is to divide the rNb source coding bits using the standard reverse water-�lling

algorithm [4]. When N is large there is virtually nothing to be gained by varying the allocation of channel codes

by subbands in an image.

The overall rate R does play a role in determining r for smaller values of N , however. A more careful

examination of the right hand side of (6) reveals that when the rate R is large we require a higher proportion of

channel code. This suggests that for small N we will obtain reduced errors when coding collections of Gaussians

by allocating higher levels of channel codes to the high variance variables.

The independence of r from R is due to the asymptotic e�ciency of the codes we use. We expect gains from

joint source/channel coding for bursty channels for which our codes are less e�ective, and if we are forced to

limit code block lengths due to constraints on computational complexity. As we see in the next section, our

experimental results bear out these hypotheses.

2.2 Maximum Distance Separable Codes

The codes we use in this paper are based on Rabin's Information Dispersal Algorithm[17] (IDA) and its variants

[16]. The basic idea is a simple one: our codes consist of N dimensional vectors over a �nite �eld GF (2c), where

c is a constant that divides b, the total number of bits in a packet. The data we wish to transmit occupies a

subspace of rank k. We recover data by projecting a vector of k received c-bit words onto the k-dimensional

source code subspace.

We embed the k-dimensional data space into the N dimensional space using an N�k matrixA. To ensure that

we can recover the data from any k words, A must have the property that any k of its columns are independent.

One suitable matrix is the Vandermonde matrix with entries Aij = �i+j, where � is an element of GF (2c) of

order 2c � 1.

Security considerations in the design of IDA scheme warrant the use of a matrix A such that no data values

can be recovered with fewer than k words. As we discuss below, we would like to be able to make use of partial

data even if there are more than N � k losses. We therefore modify Rabin's scheme by placing the matrix A in

systematic form.

In addition to increasing our ability to use partial data, our modi�cation reduces the overall complexity of the

scheme. The dominant cost in Rabin's implementation is a matrix multiplication requiring k operations per word.

For our modi�ed implementation the cost is l operations per sample where l is the number of lost data values.

Since we have E(l) = (1� p)k, this represents a large savings for small loss rates. In our implementation we use

the extension �eld GF (28), so each word corresponds to a byte. Additions are done using exclusive-or operations,

and multiplications of �eld elements are stored in a lookup table, so the calculations required for reconstructing



lost samples are inexpensive.

3 JOINT SOURCE AND CHANNEL CODING

We use a simple wavelet transform coding scheme for our numerical experiments. We perform a 5-level wavelet

transform with symmetrized boundaries using the 7/9-tap biorthogonal wavelet of [2]. Coe�cients are quantized

using the embedded quantization scheme of [22] and entropy coded using an adaptive arithmetic coder. There

is no training involved. We describe bit allocation in more detail below. This simple scheme, despite its lack of

higher level data structures such as zerotrees, yields PSNR's roughly comparable to those of Shapiro's embedded

zerotree wavelet coder[19] due to its more e�cient bit allocation procedure.

We have chosen to work with a wavelet-based scheme because of its simplicity and good performance at low

bit rates. The ideas presented below can be generalized to other subband-based schemes such as JPEG. Adapting

the ideas to DCT-based schemes, for example, requires replacing wavelet subbands in the discussion below with

blocks of DCT coe�cients of comparable frequency.

3.1 Bit Allocation for Source Coding

The discrete wavelet transform partitions an image into a set of subbands ranging from �ne scales (high

frequency) to coarse (low frequency). In natural images the bulk of the visually important information is con-

centrated in the coarse-scale subbands, with the �ne-scale subbands contributing primarily near sharp edges. We

obtain a compressed image by �nely quantizing coe�cients that contribute heavily to image �delity and coarsely

quantizing others. Determining the quantization resolution of each subband is a problem of resource allocation.

We have a tradeo� between quantization error and total storage cost, and we must allocate quantizer resolutions

to obtain minimal distortion for our given bit expenditure.

Our task is to select one of a family of quantizers Q0 : : :QK for each image subband. The quantizers are

arranged from coarsest (Q0) to �nest (QK) and are have bin widths that are scaled according to the range Rj of

coe�cients in each subband. Quantizer Qk has 2
k � 1 bins. One bin, of width 2�k+1Rj is centered at the origin.

The other 2k � 2 bins are spaced uniformly and symmetrically around the center bin and have width 2�kRj.

This family of quantizers has the important property that quantizer bins are nested, i.e. each bin of Qk can be

decomposed into either two or three bins in Qk+1.

Except for the central double-width bin around 0, each quantizer bin in Qk is re�ned to two equal-sized bins

in the next �ner quantizer Qk+1. The central width w \dead-zone" bin around 0 in quantizer Qk is re�ned into

3 bins in quantizer Qk+1, a central bin of width w

2
and two side bins of width w

4
. We express the output of

the quantizer Qk as a string of re�nements (r0; r1; : : : ; rk), where each of the ri's is a 0, 1, or 2. The sets of

re�nements are essentially the bitplanes of the coe�cients ordered from the most signi�cant bit to the least, and

we will refer to them as such for convenience. By conditioning the re�nement rj on the previous re�nement rj�1
we obtain the embedded representation with no increase in storage cost over a non-embedded coder. (On the

contrary, in practice we �nd that the estimates of the density function adapt much faster for the embedded case,

so we actually obtain slightly better results by using the embedded coder.)

Each quantizer Qk applied to subband j has associated with it a cost Cj(k) of storing the entropy coded

quantized values and a distortions Dj(k). We use the total squared error as a distortion measure, but the

algorithms described in this paper will function equally well with other additive metrics such as the perceptually

weighted metric described in [14].



For an image decomposed into n subbands, our goal is to �nd a vector q = (q1; q2; : : : ; qn) of quantizer indices

so that the total distortion Dtotal(q) =
P

n

j=0Dj(qj) is minimized subject to the constraint that the total cost in

bits, Ctotal(q) =
P

n

j=0Cj(qj) is less than or equal to some given bit budget Cmax. Thus we seek a minimization

over q 2 Q where Q is a given set of valid vectors of quantizer indices.

We use a discrete Lagrange multipliers scheme to minimizeDtotal subject to the constraint. We minimize the

sumDtotal+�Ctotal where an appropriate � is found using a binary search as described in Shoham and Gersho[20].

Because not all cost constraints are achievable using this Lagrangian scheme, we allocate any remaining bits using

marginal analysis.

3.2 Bit Allocation for Joint Source/Channel Coding

We can optimize the distribution of channel codes for subbands using a simple extension of the above allocation

procedure. Each subband in an N -packet transmission is protected by an (N; k) code, where k ranges from 0 to

N . We denote the level of error correction for subband j by mj, where mj indicates that an (N;N �mj) code is

used for subband j.

We replace the cost and distortion functions Cj(qj) and Dj(qj) with the functions Ĉj(qj;mj) and D̂j(qj;mj)

that incorporate the cost of the channel codes and the resulting expected distortion incurred in transmission. The

new cost function Ĉj(qj;mj) will equal the old Cj(qj) plus the number of bits used for the channel coding. The

new distortion function D̂j(qj;mj) is obtained using the expected distortion given the channel code (N;N �mj).

We again use a discrete Lagrange multipliers scheme followed by marginal analysis for the allocation.

The results of this procedure are illustrated in �gure 1. The increased exibility in channel code allocation

yields reductions in the expected squared error of up to 1.2 dB at low rates. Moreover, as �gure 1 shows,

the amount of channel coding overhead required to achieve these low errors is 15 to 25 % less than in the

uniformly distributed case. The e�ects of our joint source/channel optimization are even more pronounced for

bursty channels and when the code lengths are restricted. Figure 2 illustrates the results of our optimization

for restricted code lengths and for a bursty channel. Losses in the bursty channel follow a Markov model: the

probability of an erasure is 60% if the previous packet was erased and 10% if not, yielding an overall erasure rate

of 20%.

The data in these �gures has been computed analytically from the optimizer output. Actual implementation

will involve some small amounts of additional overhead to describe quantizer parameters, etc. Achieving the

prescribed channel coding levels per subband is possible by partitioning each network packet into subsets protected

by channel codes of di�erent strengths. Such a partitioning is illustrated in �gure 3.

3.3 Bitplane-Level Allocation

Even at the subband level, not all bits in our compressed image contribute equally to reconstructed image

�delity. In particular, the coarsest scale layers of our nested quantization scheme contribute much more than do

the �ne scale layers. In fact, we can convert any scalar quantization scheme to such a nested scheme by grouping

adjacent quantizer bins and using an entropy coding scheme with conditioning. We can obtain further reductions

in expected distortion by allocating our channel codes at the \bitplane" level.

Allocation of channel codes at the bitplane level is complicated by the fact that successive bitplanes are

coupled. Entropy coding of �ne scale bitplanes is conditioned on coarser scale bitplanes, so the loss of a coarse

scale bitplane results in the loss of all �ner scale bitplanes. Algorithms have been developed for handling such

dependent quantization problems for MPEG[18]. As we show below, however, in this particular case the coupling
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Figure 1: Image quality and fraction of total bytes devoted to channel coding as a function of the total byte

budget. Our image quality metric is expected squared distortion, and we have expressed this as a peak signal to

noise ratio. The test image is the 512 � 512 Lena image. Packets are erased independently with a 10% probability

of erasure. Results are shown for (1) optimal uniformly distributed channel codes, (2) channel codes optimized

per subband, and (3) channel codes optimized per bitplane.
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bursts following a Markov model: the probability of an erasure is 60% if the previous packet was erased and 10%

if not. The bene�ts of joint source/channel coding are even more pronounced for such a channel than for �gure

1. The channel on the right is as in �gure 1, but all channel codes are limited to length 8. Again the bene�ts of

joint source/channel coding are enhanced.
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formed from byte j of each packet. By varying k for each byte we can create packets in which data has varying

levels of protection.



is not problematic.

We require an assumption for our allocation procedure: that the operational rate-distortion curve produced

by our quantization procedure is convex. Let Cj;k and Dj;k be the cost and the reduction in distortion obtained

from quantizing bitplane k of subband j. We assume that
Dj;k

Cj;k

� Dj+1;k

Cj+1;k
: This has been veri�ed empirically for

our test images. Moreover, analysis of Gish and Pierce[10] show that it holds at high rates for entropy coded,

uniformly quantized i.i.d. sources.

If there were no coupling between the bitplanes, we could �nd an optimal allocation using Lagrange multipliers.

We �nd for each subband j and bitplane k

max
mj;k

�
Dj;kP (mj;k)� �Cj;k

�
N

N �mj;k

��
: (9)

Here mj;k denotes coding with an (N;N � mj;k) coder and P (mj;k) is the probability that mj;k or fewer errors

occur during transmission of the N packets. If the maximumof this di�erence is positive, then we use (N;N�mj;k)

codes for bitplane k of subband j; otherwise we discard the bitplane.

Now because of our assumed convexity we must have mj;k � mj;k+1, i.e. coarser bitplanes are more heavily

protected than �ner bitplanes. The coupling between bitplanes leaves this inequality unchanged, since the coupling

increases the channel coding requirements of coarse bitplanes relative to �ne bitplanes. In fact, the monotonicity

of the levels serves to decouple the allocation problem. The monotonicity means that �ne scale bitplanes will

always be lost before coarse quantizer bitplanes. Fine scale bitplanes are never successfully transmitted without

the coarser bitplanes upon which they depend, so the above maximization of (9) in fact yields the optimal coupled

solution.

In �gure 1 we see that this bitplane-level optimization yields a modest additional reduction in expected

distortion as well as further reductions in channel coding overhead over the subband-level optimization.

3.3.1 Geometric Interpretation

The above bitplane-level bit allocation procedure ties in with work on vector quantization for noisy channels.

Zeger[26] has shown that one can obtain better results by transmitting information over a noisy channel using

a high resolution vector quantizer with no explicit error control than by using a lower resolution quantizer with

forward error correction. The reason is that error coding entails the explicit assignment of collections of received

vectors to a single code value. With straight vector quantization, on the other hand, received vectors can be

arbitrarily assigned to decoded values. This additional freedom can be used to improve the performance of the

coder. Steps towards constructing such channel-optimized vector quantizers have been described in [27] and [7].

In each of these works, quantizer indices are assigned so that Hamming distances between codewords correspond

to the Euclidean distances between their decoded values. Our construction embodies similar ideas, but entails

the use of much lower complexity scalar quantizers.

In our case, we would like to code our data in such a way that small numbers of erasures correspond to

small Euclidean distances between received codewords. In our present framework, we distribute n quantized

samples over N packets, and the loss of a single packet prevents the decoding of the entire set of samples. Hence

any nonzero number of erasures corresponds to a large Euclidean distance. The addition of error correcting

codes increases the correspondence between the numbers of erasures and Euclidean distance: small numbers of

erasures correspond to a Euclidean distance of 0, and larger numbers of erasures correspond to a large Euclidean

distance. The above bitplane-level assignment of forward error correction takes this process one step further{

quantizer reconstructions degrade gracefully as the number of erasures increases. The result is �ner control over

the assignment of received vectors to decoded values than is attainable with a single level of correction for all

bitplanes.



3.4 Error-Resilient Source Coding

We can further reduce the expected distortion by carrying the above analogy with vector quantization one

step further. Consider the problem of decoding a vector distributed over N packets when the last packet has

been erased. The decoded value that minimizes the error satis�es a centroid condition: it is the average of the

decoded values for all vectors that whose �rst (N � 1)b bits agree with the (N � 1)b received bits, weighted by

the probability of generating each vector. The analogous process for a �xed-rate scalar quantizer is to decode

erased variables to their means. This is a straightforward process in our implementation, since high-pass subband

coe�cients are known a priori to have means of roughly 0.

We can get an idea of how the use of this fragmentary data a�ects the optimal asymptotic tradeo� between

source and channel coding by modifying our vector quantization from section 2.1. Rather than using a vector

quantizer whose output spans all N packets, we reduce the dimension so that the output of the quantizer spans

a single packet. With this modi�cation, erased packets a�ect only a small number of data values. For large N

the role of this fragmentary data in the tradeo� is negligible, since the resulting modi�cations of P (r) introduce

only a polynomial modi�cation of a function whose behavior is dominated by an exponential. However, we once

again �nd that this fragmentary data plays a useful role for the values of N in which we are interested.

Making use of fragmentary information in variable length scalar quantizers is more di�cult than for �xed rate

VQ's, because we must determine which particular coe�cients have been erased. One way to accomplish this is by

adding synchronization data to packets. For example, for each level of channel coding in each packet we can add a

tag indicating the index of the �rst coe�cient at that level. (Making use of fragmentary information at the bitplane

level is further complicated by the interdependencies between bitplanes; methods of e�ciently making use of this

fragmentary information are currently under investigation.) For subband-level channel optimization, the side

synchronization information is small relative to the total packet size (Internet packets can be as large as 576 bytes

without being fragmented by routers) and is also strongly dependent on the method of implementation. Although

our experiments do not incorporate the cost of this side information, they should give a good approximation of

what is attainable by using fragmentary data in the subband-level case.

As we see from �gure 4 we obtain only a small additional reduction in the expected squared error from using

this additional fragmentary data. As we discuss in the next section, the minimum squared error metric results in

a very conservative allocation with heavy use of channel coding. Losses occur insu�ciently frequently for the use

of fragmentary data to have much e�ect. We discuss alternative error metrics below.

4 DISTORTION MEASURES

The expected squared error distortion measure is widely used due to its simple mathematical properties. It

is a natural measure for us to use given that our development has been motivated by work in a more abstract

information theoretic setting. We now examine in more detail the suitability of this metric to our purposes. Our

goal is to speed the transmission of images sent over the Internet. We are concerned primarily with the most

frequently observed image qualities. Catastrophic events that occur extremely rarely are not of great importance.

We can get an better idea of the average user-experienced quality of our error-corrected images by ignoring

levels of losses that occur infrequently, say less than 1% of the time. The plot on the right of �gure 4 shows the

result of our optimization when we compute our expectations over frequent levels of loss, i.e. we exclude the 99th

percentile high loss events. We �nd that the gains in expected squared error from joint source/channel coding

are signi�cantly reduced under this restricted expectation.

The penalty for a lost packet under our squared error metric is quite severe. The large size of these penalties

means that rare events, far out in the tail of the error cdf, can produce large changes in the overall average
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Figure 4: Image quality as a function of the total byte budget. For both plots, packets are erased in bursts

following a Markov model: the probability of an erasure is 60% if the previous packet was erased and 10% if not.

The plot on the left shows that being able to make use of fragments of block coded data does not greatly reduce

the expected error. The plot on the right compares expected errors computed over the set of all possible errors

to expected errors computed over the set of errors that occur 99% of the time; rare catastrophic errors have been

excluded. The comparison illustrates a problem with the expected squared error metric: it is strongly inuenced

by rare, catastrophic events.

distortion. Moreover, even in the error-limited regime, bit allocation is done in a very conservative fashion{the

optimizer sets the probability of uncorrectable errors to be nearly 0 for all subbands and bitplanes. Table 5 shows

that channel code assignments for the L2 subband-level optimized allocation are very similar to the optimal

uniform channel code assignments.

We can achieve less conservative allocations by changing our norm. The L1 norm imposes much smaller

penalties for packet drops than does L2. As a result, our L1-optimized distributions of channel codes are much

less at. They signi�cantly reduce the channel coding overhead by permitting relatively rare losses of high

frequency data. Moreover, DeVore et al[6] make the case, based on arguments about the frequency sensitivity of

the human visual system, that L1 is a more appropriate distortion measure for images than L2. Experiments by

Healy et al[24] also suggest that the Lp norms for small values of p correspond more closely to perceived distortion

than does L2.

We see from �gure 5 that the L1 optimization results in a gradual reduction in the amount of channel coding

protection of subbands. In the L1 optimized subband-level allocation, 14% of all bytes are used for channel coding,

versus 20% for the L2 optimized subband-level allocation and 22% for the L2 optimized uniform allocation. With

the L1 norm we are able to use a higher rate coder, giving us a higher quality image for much of the time and a

gradual degradation under increasing error loads.

5 CONCLUSION

Joint source/channel coding, although asymptotically of little bene�t, provides signi�cant gains in expected

image quality for regimes of practical interest. These gains are particularly pronounced for bursty channels and

when channel code block lengths are restricted. We must be careful in our evaluation of expected squared error

results, however, since this metric is strongly inuenced by rare catastrophic events and as a result may overstate

performance. Alternative distortion measures such as expected absolute error are currently under investigation.
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Figure 5: Channel code allocations for L1 and L2 optimization. Subbands are from a 5-stage wavelet decompo-

sition and are ordered from coarsest (bottom) to �nest (top). The vertical dashed lines indicate optimal uniform

channel code levels.
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