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A Wavelet-Based Analysis of Fractal Image
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Abstract| Why does fractal image compression work?

What is the implicit image model underlying fractal block

coding? How can we characterize the types of images for

which fractal block coders will work well? These are the

central issues we address. We introduce a new wavelet-

based framework for analyzing block-based fractal compres-

sion schemes. Within this framework we are able to draw

upon insights from the well-established transform coder

paradigm in order to address the issue of why fractal block

coders work. We show that fractal block coders of the

form introduced by Jacquin[1] are a Haar wavelet subtree

quantization scheme. We examine a generalization of this

scheme to smooth wavelets with additional vanishing mo-

ments. The performance of our generalized coder is compa-

rable to the best results in the literature for a Jacquin-style

coding scheme. Our wavelet framework gives new insight

into the convergence properties of fractal block coders, and

leads us to develop an unconditionally convergent scheme

with a fast decoding algorithm. Our experiments with this

new algorithm indicate that fractal coders derive much of

their e�ectiveness from their ability to e�ciently represent

wavelet zerotrees. Finally, our framework reveals some of

the fundamental limitations of current fractal compression

schemes.

Keywords| fractal image compression, wavelets, self-

quantization of subtrees, self-similarity, fractional Brownian

motion

I. Introduction

F
RACTAL image compression techniques, introduced

by Barnsley and Jacquin [2][3], are the product of the

study of iterated function systems (IFS)[4]. These tech-

niques involve an approach to compression quite di�erent

from standard transform coder-based methods. Transform

coders model images in a very simple fashion, namely, as

vectors drawn from a wide-sense stationary random pro-

cess. They store images as quantized transform coe�cients.

Fractal block coders, as described by Jacquin, assume that

\image redundancy can be e�ciently exploited through

self-transformability on a blockwise basis" [1]. They store

images as contraction maps of which the images are ap-

proximate �xed points. Images are decoded by interating

these maps to their �xed points.

The literature on fractal image compression has focused

on three basic problems. The �rst problem is to deter-

mine a family of contraction maps that can be used to

e�ectively code images [5][6]. Although a variety of fami-

lies have been explored, most schemes in the literature are

closely related to the block coders described by Jacquin in
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[1] and by Fisher in [7]. Throughout this paper, when we

refer to fractal block coders, we will be referring to such

Jacquin-style schemes. The second problem is to �nd fast

and e�ective algorithms for associating a given image to a

contraction map of which the image is an approximate �xed

point[8] [9]. The third problem is to analyze the conver-

gence properties of various families of maps and to establish

error bounds for decoded images[10] [11].

In this paper we address the issues of �nding e�ec-

tive families of maps and convergence properties of fractal

schemes. More importantly, we address some much more

fundamental questions. First and foremost, we seek to ex-

plain why fractal compression works. Toward this end, we

ask, What is the implicit image model used in fractal image

compression? How can we characterize the types of images

for which fractal compression will work well? The theory

of iterated function systems does not provide satisfactory

answers.

We introduce a new wavelet-based framework for ana-

lyzing block-based fractal compression schemes. Within

this framework we are able to draw upon insights from the

well-established transform coder paradigm in order to ad-

dress the issue of why fractal block coders work. Using the

insights gained in our analysis, we obtain a generalization

of fractal block coding that yields compression results that

are comparable to the best reported in the literature for

fractal block coders.

The main goal of the paper, however, is not to develop

the best possible fractal block coder. Rather, we seek to

understand the mechanisms underlying the performance of

fractal block coders. Toward this end, we restrict our atten-

tion to wavelet-based coders that closely mimic the struc-

ture of the block coders introduced by Jacquin [1]. We note

that comparable or slightly better results have been ob-

tained with coders that relax these constraints and that use

more elaborate quantization schemes [12] [13]. Indeed, the

wavelet/zerotree coder which forms the foundation of our

generalized fractal coder yields much better performance

when our imposed constraints are relaxed.

We see that the fractal block coders of [1] [7] arise natu-

rally in our wavelet-based framework as Haar quantization

schemes, and we obtain a simple generalization of these

schemes to smooth wavelet bases. We obtain new insight

into the convergence properties of fractal block coders, and

we describe an important unconditionally convergent vari-

ant of our generalized coder. Our experiments with this

coder provide evidence that much of the performance of

fractal block coders is due to the localization of image en-

ergy in both space and frequency. Finally, our framework

reveals some of the fundamental limitations of current frac-
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tal compression schemes.

A. Related Work

The link between fractal image coding and wavelets is

not a new one. The �rst mention of the connection was

by Pentland and Horowitz in [14]. The algorithm de-

scribed in [14], however, consists of a within-subband �xed

vector quantizer that uses cross-scale conditioning for en-

tropy coding vector indices, and is only loosely related to

Jacquin-style schemes we examine here.

An important paper linking wavelets and fractal image

coding is that of Rinaldo and Calvagno [13]. The coder in

[13] uses blocks from low frequency image subbands as a

vector codebook for quantizing blocks in higher frequency

subbands. The main focus of [13] is to develop a new coder

rather than to analyze the performance of fractal block

coders in general. While the procedure in [13] is inspired by

the Jacquin-style coders examined in this paper, it di�ers

in important ways. We discuss these di�erences in Section

V.

The link between fractal and wavelet-based coding de-

scribed in Section III-B below was reported independently

and nearly simultaneously by this author [15], by Krupnik,

Malah, and Karnin [16], and by van de Walle [17]. This

paper contains a substantial extension and generalization

of the algorithms, analyses, and ideas presented in the pre-

vious three papers.

B. Outline

The balance of the paper is organized as follows. Section

II gives an overview of a basic fractal block coding scheme.

In Section III we introduce a wavelet-based framework for

analyzing fractal block coding and show that Jacquin-style

block coders are Haar subtree quantization schemes. In

Section IV we introduce a simpli�ed and generalized ver-

sion of fractal block coding. Our analysis of the conver-

gence properties of this scheme gives insight into the con-

vergence properties of standard fractal block coders. Us-

ing our wavelet framework and a simple texture model we

make Jacquin's assumption of \self-transformability" more

concrete and we discuss why fractal block coding works for

complex image features. In Section V we present exper-

imental results and further discussion of the performance

and limitations of fractal block coders.

II. Fractal Block Coders

In this section we describe a generic fractal block coding

scheme based on those in [1][7], and we provide some heuris-

tic motivation for the scheme. A more complete overview

of fractal coding techniques can be found in [18][19].

A. Motivation for Fractal Coding

Transform coders are designed to take advantage of very

simple structure in images, namely that values of pixels

that are close together are correlated. Fractal compres-

sion is motivated by the observation that important image

features, including straight edges and constant regions, are

invariant under rescaling. Constant gradients are covariant

under rescaling, i.e. rescaling changes the gradient by a con-

stant factor. Scale invariance (and covariance) presents a

type of structure for an image coder to exploit.

Fractal compression takes advantage of this local scale

invariance by using coarse-scale image features to quantize

�ne-scale features. Fractal block coders perform a vector

quantization (VQ) of image blocks. The vector codebook is

constructed from locally averaged and subsampled isome-

tries of larger blocks from the image. This codebook is

e�ective for coding constant regions and straight edges due

to the scale invariance of these features. The vector quanti-

zation is done in such a way that it determines a contraction

map from the plane to itself of which the image to be coded

is an approximate �xed point. Images are stored by saving

the parameters of this map and are decoded by iterating

the map to �nd its �xed point. An advantage of fractal

block coding over VQ is that it does not require separate

storage of a �xed vector codebook.

The ability of fractal block coders to represent straight

edges, constant regions, and constant gradients e�ciently

is important, as transform coders fail to take advantage of

these types of spatial structures. Indeed, recent wavelet

transform based techniques that have achieved particu-

larly good compression results have done so by augmenting

scalar quantization of transform coe�cients with a zerotree

vector that is used to e�ciently encode locally constant re-

gions [20].

For fractal block coders to be e�ective, images must be

composed of features at �ne scales that are also present at

coarser scales up to a rigid motion and an a�ne transform

of intensities. This is the \self-transformability" assump-

tion described by [1]. It is clear that this assumption holds

for images composed of isolated straight lines and constant

regions, since these features are self-similar. That it should

hold when more complex features are present is much less

obvious. In Section IV we use a simple texture model and

our wavelet framework to provide a more detailed charac-

terization of \self-transformable" images.

B. Mechanics of Fractal Block Coding

We now describe a simple fractal block coding scheme

based on those in [1][7]. For convenience we will focus

on systems based on dyadic block scalings, but we note

that other scalings are possible. Let I be a 2N � 2N pixel

grayscale image. Let BJK;L be the linear \get-block" op-

erator which when applied to I extracts the 2J � 2J sub-

block with lower left corner at (K;L). The adjoint of this

operator, (BJK;L)
�, is a \put-block" operator that inserts

a 2J � 2J image block into a 2N � 2N all-zero image so

that the lower left corner of the inserted block is at (K;L).

We will use capital letters to denote block coordinates and

lower case to denote individual pixel coordinates. We use

a capital Greek multi-index, usually �, to abbreviate the

block coordinates K;L and a lower-case Greek multi-index

to abbreviate pixel coordinates within blocks.

We partition I into a set of non-overlapping 2R � 2R

range blocks. The goal of the compression scheme is to ap-

proximate each range block with a block from a codebook
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TABLE I

Basic notation

B
R
� Get block of size 2R � 2R from location �

LP Apply isometry P to a block

A
k Average and subsample a block k times

S
N�R
� Get subtree with root from location �

within scale (wavelet domain analog of BR� )bAk Truncate and rescale subtree k times

(wavelet domain analog of Ak)bLP Rotate/reect wavelet coe�cients in a

subtree (wavelet domain analog of LP )

1 Square 2N � 2N matrix of all 1's

D Domain pool

R Set of range blocks


 Set of orientations HH, LH, HL

g� Gain coe�cient for block/subtree �

h� DC o�set/scaling function coe�cient

for block/subtree �

constructed from a set of 2D � 2D domain blocks, where

0 < R < D � N . Forming this approximation entails the

construction of a contraction map from the image to itself,

i.e. from the domain blocks to the range blocks, of which

the image is an approximate �xed point. We store the im-

age by storing the parameters of this map, and we recover

the image by iterating the map to its �xed point. Iterated

function system theory motivates this general approach to

storing images, but gives little guidance on questions of

implementation. The basic form of the block coder de-

scribed below is the result of considerable empirical work.

In Section III we see that this block-based coder arises nat-

urally in a wavelet framework, and in Section IV we obtain

greatly improved coder performance by generalizing these

block-based maps to wavelet subtree-based maps.

The range block partition is a disjoint partition of the

image consisting of the blocks fBRK;LIj(K;L) 2 Rg. Here

R = f(2Rm; 2Rn)j0 � m;n < 2N�Rg where m;n 2Z. The

domain blocks from which the codebook is constructed are

drawn from the domain pool, the set fBDK;LIj(K;L) 2 Dg.

A variety of domain pools are used in the literature. A

commonly used pool [1] is the set of all unit translates of

2D � 2D blocks, D = f(m;n)j0 � m;n < 2N � 2Dg. Some

alternative domain pools that we will discuss further are

the disjoint domain pool, D = f(2Dm; 2Dn)j0 � m;n <

2N�Dg, a disjoint tiling of I, and the half-overlapping do-

main pool, D = f(2D�1m; 2D�1n)j0 � m;n < 2N�D+1g,

the union of four disjoint partitions shifted by a half block

length in the x or y directions (we periodize the image at

its boundaries).

Two basic operators are used for codebook construction.

The \average-and-subsample" operator A maps a 2J � 2J

image block to a 2J�1�2J�1 block by averaging each pixel

in BJ�I with its neighbors and then subsampling. We de-

�ne (ABJ�I)(k; l) =
1
4
[(BJ�I)(2k; 2l) + (BJ�I)(2k+ 1; 2l) +

(BJ�I)(2k; 2l+1)+(BJ�I)(2k+1; 2l+1)] where BJ�I(k; l) is

the pixel at coordinates (k; l) within the subblock BJ�I. A

second operator is the symmetry operator Lk, 1 � k � 8,

which maps a square block to one of the 8 isometries ob-

tained from compositions of reections and 90 degree rota-

tions.

Range block approximation is similar to shape-gain vec-

tor quantization[21]. Range blocks are quantized to a linear

combination of an element from the codebook and a con-

stant block. The codebook used for quantizing range blocks

consists of averaged and subsampled isometries of domain

blocks, the set C = fLkA
D�R

B
D
� I : � 2 D; 0 � k � 8g.

Here AD�R denotes the operator A applied D � R times.

The contrast of the codewords in C is adjusted by a gain

factor g, and the DC component is adjusted by adding a

subblock of the 2N � 2N matrix of ones, 1, multiplied by

an o�set factor h. For each range block BR�I we have

B
R
�I � g�LP (�)A

D�R
B
D
�(�)I + h�B

R
�1: (1)

Here � : R ! D assigns an element from the domain

pool to each range element and P : R ! f1 : : :8g assigns

each range element a symmetry operator index. Ideally the

parameters g, h, �, and P should be chosen so that they

minimize the error in the decoded image. The quantization

process is complicated by the fact that the codebook used

by the decoder is di�erent from that used by the encoder,

since the decoder doesn't have access to the original do-

main blocks. Hence errors made in quantizing range blocks

are compounded because they a�ect the decoder codebook.

These additional e�ects of quantization errors have proven

di�cult to estimate, so in practice g; h;�, and P are chosen

to minimize the l2 approximation error in 1. This tactic

gives good results in practice; we discuss the propagation

of errors further in [22].

C. Decoding Fractal Coded Images

The approximations for the range blocks (1) determine

a constraint on the image I of the form I � GI + H.

Expanding I as a sum of range blocks we obtain

I =
X
�2R

(BR� )
�
B
R
�I

�
X
�2R

g�(B
R
� )

�
LP (�)A

D�R
B
D
�(�)I

+
X
�2R

h�(B
R
� )
�
B
R
�1

= GI +H:

Provided the matrix I�G is nonsingular, there is a unique

�xed point solution Ifp satisfying

Ifp = GIfp +H (2)

given by Ifp = (I � G)�1H. Because G is a 22N � 22N

matrix, inverting I�G directly is an inordinately di�cult

task. If and only if the eigenvalues of G are all less than

1 in magnitude, we can �nd the �xed point solution Ifp by

iteratively applying (2) to an arbitrary image I0. Decoding

of fractal coded images proceeds by forming the sequence

In = GIn�1+H = GnI0 +
Pn�1
k=0G

kH.
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Fig. 1. We quantize the small range block BR
�
I on the right using the codebook vector gLABD

�0
I + hB

R

�
1 obtained from the larger domain

block on the left. A averages and subsamples the block, L rotates it, multiplication by the gain g modi�es the contrast, and the addition
of the o�set hBR

�
1 adjusts the block DC component.

In general the image to be coded, I, is not an exact �xed

point of (2), i.e. I = GI+H+E where E is an error image.

Only G and H are stored, so the di�erence between the

decoded image Ifp and the original I is I�Ifp = (I�G)�1E .

Our goal in coding is to minimize I �Ifp with respect to

some norm given a bit budget for storing G and H. Given

a vector norm jj�jj we construct a matrix norm by de�ning

jjGjj = maxjjxjj=1 jjGxjj. With respect to these norms we

have

jjI � Ifpjj � jj(I �G)�1jjjjEjj �
jjEjj

1� jjGjj
(3)

provided jjGjj < 1, i.e. provided G is contractive with

respect to the given norm. The bound (3) is referred to in

fractal compression literature as the collage theorem bound.

The collage theorem bound is more useful as a motivator

than as a practical numerical bound. Although we typically

try to minimize the l2 error between I and Ifp, bounding

jjGjj2 < 1 is quite di�cult [23]. We can bound jjGjj
1
< 1 by

constraining the gains jg�j < 1 [1]. Although this ensures

that the decoding process will converge, numerical experi-

ments have found the collage bound to be too pessimistic

by orders of magnitude [24]. Moreover, it fails to predict

the convergence of block coding schemes when some gains

jg�j > 1. In section IV we discuss schemes with conver-

gence properties that are independent of the g�.

III. A Wavelet Framework

A. Notation

The wavelet transform is a natural tool for analyzing

fractal block coders since wavelet bases possess the same

type of dyadic self-similarity that fractal coders seek to

exploit. In particular, the Haar wavelet basis possesses

a regular block structure that is aligned with the range

block partition of the image. We show below that the maps

generated by fractal block coders reduce to a simple set of

equations in the wavelet transform domain.

Separable 2-D biorthogonal wavelet bases consist of

translates and dyadic scalings of a set of separable wavelets

 LH(x; y),  HL(x; y), and  HH (x; y) together with trans-

lates of a scaling function �(x; y). We will use the sub-

script ! to represent one of the three orientations in


 = fLH;HL;HHg. We will limit our attention to sym-

metrical (or antisymmetrical) bases. The discrete wavelet

transform of a 2N � 2N image I expands the image into

a linear combination of the basis functions in the set

WJ = f�Jk;lj0 � k; l < 2Jg [ f j!;k;lj! 2 
; J � j <

N ; 0 � k; l < 2jg. We will use a single lower-case Greek

multi-index, usually , to abbreviate the orientation and

translation subscripts of � and  . The coe�cients for the

basis functions �
j
k;l and  

j
!;k;l are given by h~�

j
k;l; Ii and

h ~ 
j
!;k;l; Ii, respectively, where

~�
j
k;l and

~ 
j
!;k;l are dual scal-

ing functions and wavelets.

An important property of wavelet basis expansions, par-

ticularly Haar expansions, is that they preserve the spatial

localization of image features. For example, the coe�cient

of the Haar scaling function �Jk;l is proportional to the av-

erage value of an image in the 2J � 2J block of pixels with

lower left corner at 2Jk; 2J l. The wavelet coe�cients asso-

ciated with this region are organized into three quadtrees.

We call this union of three quadtrees a wavelet subtree. Co-

e�cients forming such a subtree are shaded in each of the

transforms in Figure 2. At the root of a wavelet subtree are

the coe�cients of the wavelets  J!;k;l, where ! 2 
. These

coe�cients correspond to the block's coarse-scale informa-

tion. Each wavelet coe�cient h ~ 
j
!;k;l; Ii in the tree has

four children that correspond to the same spatial location

and the same orientation. The children consist of the co-

e�cients of the wavelets of the next �ner scale,  
j+1
!;2k;2l,

 
j+1
!;2k+1;2l,  

j+1
!;2k;2l+1, and  

j+1
!;2k+1;2l+1. A wavelet subtree

consists of the coe�cients of the roots, together with all

of their descendents in all three orientations. The scaling

function �Jk;l is localized in the same region as the subtree

with roots given by  J!;k;l, and we refer to this �Jk;l as the

scaling function associated with the subtree.

B. A Wavelet Analog of Fractal Block Coding

We now describe a wavelet-based analog of fractal block

coding introduced in [15]. Fractal block coders approxi-

mate a set of 2R � 2R range blocks using a set of 2D � 2D

domain blocks. The wavelet analog of an image block, a

set of pixels associated with a small region in space, is a

wavelet subtree together with its associated scaling func-
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tion coe�cient. We de�ne a linear \get-subtree" operator

S
J
K;L : R2

2N

! R
22(N�J)

�1 which extracts from an im-

age the subtree whose root level consists of the coe�cients

of  J!;K;L for all !. We emphasize that when we discuss

wavelet subtrees in this paper, we will primarily be dis-

cussing trees of coe�cients of all 3 orientations as opposed

to more commonly used subtrees of a �xed orientation.

The adjoint of SJK;L is a \put-subtree" operator which

inserts a given subtree into an all-zero image so that the

root of the inserted subtree corresponds to the coe�cients

 J!;K;L for ! 2 
. For the Haar basis, subblocks and their

corresponding subtrees and associated scaling function co-

e�cients contain identical information, i.e. the transform of

a range blockBR�I yields the coe�cients of subtree SN�R� I

and the scaling function coe�cient h~�N�R� ; Ii. For the re-

mainder of this section we will take our wavelet basis to

be the Haar basis. The actions of the get-subtree and put-

subtree operators are illustrated in Figure 2.

The linear operators used in fractal block coding have

simple behavior in the transform domain. We �rst consider

the wavelet analog bA of the average-and-subsample oper-

ator A. Averaging and subsampling the �nest-scale Haar

wavelets sets them to 0. The local averaging has no e�ect

on coarser scale Haar wavelets, and subsampling  j yields

the Haar wavelet at the next �ner scale,  j+1 , multiplied by
1
2
. Similarly, averaging and subsampling the scaling func-

tion �j yields 1
2�

j+1
 for j < N � 1 and 0 for j = N � 1.

The action of the averaging and subsampling operator thus

consists of a shifting of coe�cients from coarse-scale to �ne,

a multiplication by 1
2 , and a truncation of the �nest-scale

coe�cients. The operator bA prunes the leaves of a subtree

and shifts all remaining coe�cients to the next �ner scale.

The action of bA is illustrated in Figure 2.

For symmetrical wavelets, horizontal/vertical block re-

ections correspond to a horizontal/vertical reection of

the set of wavelet coe�cients within each scale of a sub-

tree. Similarly, 90 degree block rotations correspond to

90 degree rotations of the set of wavelet coe�cients within

each scale and a switching of the  LH coe�cients with

 HL coe�cients. Hence the wavelet analogs bLk of the block
symmetry operators Lk permute wavelet coe�cients within

each scale. Figure 2 illustrates the action of a symmetry

operator on a subtree. Note that the Haar basis is the

only orthogonal basis we consider here, since it is the only

compactly supported symmetrical wavelet basis[25]. When

we generalize to non-Haar bases, we must use biorthogonal

bases to obtain both symmetry and compact support.

The approximation (1) leads to a similar relation for sub-

trees in the Haar wavelet transform domain,

S
N�R
� I � g�bLP (�) bAD�R

S
N�D
�(�)

I: (4)

We refer to this quantization of subtrees using other sub-

trees as the self-quantization of SN�R� I. The o�set terms

h� from (1) a�ect only the scaling function coe�cients be-

cause the left hand side of (4) is orthogonal to the sub-

blocks of 1. Breaking up the subtrees into their constituent

wavelet coe�cients, we obtain a system of equations for the

coe�cients of the  j in SN�R� I,

h ~ j ; Ii �
g�

2D�R
h ~ 
j�(D�R)
0 ; Ii =

g�

2D�R
hT ~ j ; Ii: (5)

Here T is the map induced by the domain block selection

followed by averaging, subsampling, and rotating. We ob-

tain a similar relation for the scaling function coe�cients,

h~�N�R� ; Ii �
g�

2D�R
h~�N�D�(�) ; Ii+ h�

=
g�

2D�R
hT~�N�R� ; Ii+ h� (6)

From the system (5) and (6) we see that, roughly speak-

ing, the fractal block quantization process constructs a map

from coarse-scale wavelet coe�cients to �ne. It is impor-

tant to note that the operator T in (5) and (6) does not

necessarily map elements ofWN�D to elements ofWN�D ,

since translation of domain blocks by distances smaller

than 2D leads to non-integral translates of the wavelets

in their corresponding subtrees. We discuss this notion of

a map from coarse to �ne scales in greater detail in Section

IV-E.

IV. Self-Quantization of Subtrees

A. Generalization to non-Haar bases

We obtain a wavelet-based analog of fractal compres-

sion by replacing the Haar basis used in (5) and (6) with a

symmetric biorthogonal wavelet basis. This change of basis

brings a number of bene�ts. Smooth wavelet bases elim-

inate the sharp discontinuities at range block boundaries

caused by quantization errors. These artifacts are espe-

cially objectionable because the eye is particularly sensi-

tive to horizontal and vertical lines. Moreover, bases with

a higher number of vanishing moments than the Haar bet-

ter approximate the K-L basis for the fractional Brownian

motion texture model described below, and they therefore

improve coder performance in these textured regions. Fig-

ure 5 compares images coded with Haar and smooth spline

bases. We see both an increase in overall compressed image

�delity with the spline basis as well as a dramatic reduction

in block boundary artifacts.

B. Self-Quantization of Subtrees

We now introduce a simpli�cation of the coding scheme

that facilitates our analysis of the convergence properties

of these generalized fractal block coders. We store an im-

age I by storing the parameters in the relations (5) and

(6). We must store one constant h� for each scaling func-

tion. Image decoding is greatly simpli�ed if we store the

scaling function coe�cients directly rather than storing the

h�'s. We then only have to recover the wavelet coe�cients

when decoding. Also, because we know how quantization

errors for the scaling function coe�cients will a�ect the

decoded image, we have greater control over the �nal de-

coded error than we do with the h�'s. We call this modi�ed

scheme in which we use (4) to quantize wavelet coe�cients

and we store scaling function coe�cients directly the self-

quantization of subtrees (SQS) scheme.

We can encode the scaling function coe�cients more ef-

�ciently in our SQS scheme than we can the h�'s in the
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Fig. 2. We approximate the darkly shaded range subtree SN�R
�

I using the codebook element g�bLbASN�D�0
I derived from the lightly shaded

domain subtree SN�D
�0

I. bA truncates the �nest scale coe�cients of the domain subtree, and bL rotates it. We store coe�cients in
subbands of scale 2 and lower and the encodings of all subtrees with roots in scale subband 3. Note that in our usage a subtree contains
coe�cients from all three orientations, HL, LH, and HH.

original scheme. The scaling function coe�cients associ-

ated with the range blocks are correlated and contain con-

siderable redundancy. We can exploit this redundancy by

computing the wavelet transform of these coe�cients and

storing these coarse-scale wavelet coe�cients. Although

we could employ a similar strategy with the h�'s, it is less

likely to yield signi�cant coding gains. The reason is that

the h�'s are formed from linear combinations of pairs of

scaling function coe�cients from di�erent parts of the im-

age. These scaling function coe�cient pairs are not in gen-

eral correlated because the l2 codeword selection criterion

that determines the pairings does not take the values of

these coe�cients into account. Combining these dissimi-

lar coe�cients destroys any spatial structure that may be

present in the h�'s and makes them di�cult to code.

C. Convergence for non-Haar Bases

The �rst issue we must address is that of convergence,

since our generalized encoding scheme is pointless if we

cannot decode our images. Our wavelet analog of (1) gives

rise to a relation for I similar to (2),

(WI) � GW(WI) +HW : (7)

Here WI is the discrete wavelet transform of I. We

�rst examine the convergence properties of the unmodi�ed

wavelet analog of fractal block coding in (1). We assume a

simple non-adaptive scheme.

Equations (5) and (6) express the coe�cient of each

wavelet and scaling function wk 2 WN�R in terms of the

coe�cient of a translated wavelet or scaling function at a

coarser scale, Twj. This translated function Twj will not

in general be an element of the basis WN�R. Expanding

the inner product Twj over the basis WN�R, we obtain

Twj =
P
wk2WN�R

h ~wk;Twjiwk.

The entries of the matrix GW in the row correspond-

ing to the basis function w 2 WN�R will thus be given by

Gj;k = 2R�Dg�j h ~wk;Twji for wj; wk 2 WR. The itera-

tive scheme will converge if the magnitudes of the eigen-

values of GW are all less than one. A su�cient condition

for convergence is that jjGWjj1 < 1, and this condition

will be satis�ed provided that for all � we have jg�j <

2D�Rminw0

�P
w2WN�R

jh ~w;w0ij
��1

. Here the minimum

is taken over all wavelets contained in the subtrees in the

domain pool and over all scaling functions associated with

these subtrees. This result can be extended to adaptive

coders, but it becomes decomposition dependent.

We can obtain a similar su�cient condition for conver-

gence for our scheme in which we store scaling function

coe�cients directly, and this condition is more readily ex-

tended to adaptive coders. We �rst consider the structure

of the matrixGW in (7) for the modi�ed scheme. We �rst

order the coe�cients of the image vectors WI and HW

so that they are grouped into scaling function coe�cients,

(WI)� and H�, and wavelet coe�cients, (WI) and H .

The matrix relation (7) becomes, in block form,�
(WI)�
(WI) 

�
=

�
G�� G� 

G � G  

��
(WI)�
(WI) 

�
+

�
H�

H 

�
:

All coe�cients in H are zero in both the unmodi�ed and

modi�ed schemes, since the information in HW depends

only on the scaling function coe�cients of the image. The

SQS modi�cation removes the implicit dependence of the

scaling function coe�cients (WI)� on other coe�cients in

the image, so G�� and G� have all zero entries. We

thus have jjGW jj1 < 1 provided jjG  jj1 < 1, and we can

ensure that this condition will be satis�ed by restricting

the gains g�. Upper bounds for these g�'s can be obtained

numerically for various domain pools. Table II below lists

upper bounds for g� that will ensure that jjG  jj1 < 1

for the 7/9 tap spline variant basis of [26]. We assume a

512� 512 image with a domain pool consisting of all unit

translates of blocks of size 2D � 2D or smaller. We further

assume that range blocks of size 2R�2R are quantized using

domain blocks of size 2R+1 � 2R+1. These bounds apply

to the adaptive schemes described in section V provided

the maximum domain block size satis�es the limits in the

table.

We have thus shown that provided a suitable bound is

imposed on the gains g�, we can extend fractal block cod-

ing techniques to non-Haar wavelet subtrees with arbitrary

domain pools. We emphasize that this bound is a su�cient
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TABLE II

Bound on jg�j to ensure jjGW jj
1

< 1

Largest domain block
Bound for jg�j

Haar basis Spline basis

64� 64 0.140 0.193

32� 32 0.174 0.201

16� 16 0.222 0.231

8� 8 0.333 0.256

4� 4 0.500 0.431

but not a necessary condition for convergence. Indeed, in

the next section we describe some special cases of domain

pools for which decoding is unconditionally convergent.

D. Unconditional Convergence

Because we store the scaling function coe�cients as

coarse-scale wavelet coe�cients, the matrix GW becomes

a map fromW0 toW0. The wavelets and scaling functions

Tw that make up the translated domain blocks do not in

general belong to the basis W0, and this leads to a com-

plicated matrix GW. If, however, we restrict the domain

pool to the disjoint domain pool, D = f(2Dm; 2Dn)j0 �

m;n < 2N�Dg, the matrix GW simpli�es considerably. In

this case the coe�cients in the domain subtrees all corre-

spond to wavelets in the basis W0. From (5) we see that

each wavelet coe�cient of scale N � R and �ner depends

on exactly one coarser-scale wavelet coe�cient. The matrix

GW is thus a map from coarse scales to �ne.

The rows of the matrix GW for this domain pool con-

tain a single nonzero entry with value g�
2D�R . We order

the vector of coe�cients from coarse to �ne, so GW will

be a strictly lower triangular matrix with all zeros on the

diagonal. Hence, all eigenvalues of GW are zero, and the

reconstruction procedure for this domain pool converges

unconditionally in a �nite number of steps. This partic-

ular GW is a special case of an R-scale-extending map, a

map for which each wavelet coe�cient of scale j � N�R in

the range is dependent only on the coe�cients of wavelets

in the domain from the same basis of scales coarser than j.

Theorem 1 (Reconstruction Theorem) Let I be a 2N �

2N image for which the scaling function coe�cients

h~�N�R ; Ii are known. If I is the �xed point of a linear R-

scale-extending mapM, then we can recover I from these

scaling function coe�cients usingR applications of the map

M.

Proof: By applying the wavelet transform to the im-

age IR =
P
 h
~�N�R ; Ii�N�R , we obtain all the coarse-

scale wavelet coe�cients h ~ j ; Ii for j < N � R. We can

now obtain the wavelet coe�cients h ~ N�R ; Ii by applying

the mapM, since these coe�cients depend only on the co-

e�cients we already know. Each time we apply the map

M we obtain the wavelet coe�cients at the next �ner scale,

so by induction the result is proved.

The intuition behind this proof can be seen in Figure

3. The shaded coe�cients represent coe�cients that are

stored by the SQS coder. Each range subtree is quantized

to a domain subtree with root at a coarser scale. When

we apply the mapGW to the image, information is carried

from the stored shaded section to the unshaded section.

Each application of the map GW transfers known coarse-

scale information to the next �ner scale, so we recover the

image coe�cients one scale at a time.

The disjoint domain pool illustrated for the 1-D case

in Figure 3 is a particularly simple scale-extending map.

We also obtain an scale-extending map when we use an

orthogonal basis with the half-overlapping domain pool,

D = f(2D�1m; 2D�1n)j0 � m;n < 2N�D+1g. For this

domain pool, all domain subtree coe�cients correspond

to wavelets in W except for the root coe�cients, which

correspond to half-integer translates of  N�D!;� . The map

GW will be scale-extending provided we can show that

these half-integer translates  (x � k
2 ) are orthogonal to

the the �ner scale wavelets 2j=2 (2jx � n) for j > 0.

This can be seen by noting that h (x � k
2
);  (2jx� n)i =

h (x);  (2jx � n + 2j�1k)i = 0. Hence the map GW will

still be scale-extending.

For the Haar basis this half-overlapping domain pool cor-

responds to the set of domain blocks which share bound-

aries with range blocks of the next �ner scale. This partic-

ular restricted domain pool has been studied for standard

fractal block coders in [27] and [28]. The above theorem

generalizes the results of [27] and [28] and shows clearly

why these results hold.

Our convergence proof yields a fast algorithm for decod-

ing SQS-coded images. For the disjoint domain pool each

�ne-scale wavelet coe�cient depends on only one other co-

e�cient. The cascading of information from coarse scales

to �ne thus requires only O(1) operations per pixel. We

also obtain a fast decoding scheme for orthogonal bases

with the half-overlapping domain pool since in this case

the matrix GW has a sparse block structure.

The above reconstruction theorem generalizes to allow

adaptive image encoding. Using the disjoint domain pool,

we can recover an image using a fast algorithm provided

that for each self-quantized subtree we store its associated

scaling function coe�cient. Equivalently, we can recover an

image provided we know all coarse-scale wavelet coe�cients

not contained in the range subtrees.

E. Discussion

Standard fractal compression schemes entail the quanti-

zation of \�ne-scale" features using \coarse-scale" features.

The above theorem shows we can make this notion of scale

rigorous when using the disjoint domain pool. The scale of

a particular image feature is determined by the detail space

it occupies in a multiresolution analysis of the image. It

is because the detail space of resolution 2J is not invariant

under translations smaller than 2N�J pixels that we have

convergence problems when we expand the domain pool to

include �ne translates of domain subtrees. When we ap-

proximate range subtrees using �ne translates of domain

subtrees, we introduce dependencies of �ne-scale wavelet

coe�cients on coe�cients from the same or �ner scales.

Information no longer ows strictly from coarse to �ne un-
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Fig. 3. The above �gure illustrates how information is carried from coarse scales to �ne via an application of a scale-extending map in 1-D.
The shaded coe�cients are stored by the self-quantization of subtrees coder, and below this level all range subtrees are quantized using
domain subtrees. The range subtree on the right has been quantized using a codeword constructed from the larger domain subtree on the

left. The operator bA shifts the stored coarse information in the domain subtree to the next �ner scale. Each range subtree is quantized
in a similar fashion, so each application of the scale-extending map recovers one scale of information.

der the map GW. Dependency loops from �ne-scales to

�ne-scales permit the growth of unstable eigenvectors un-

less these loops are damped by restricting the magnitudes

of the gains g�.

While unconditionally convergent domain pools allow ef-

�cient decoding algorithms, they are by means necessary

for image coding. We describe experiments with more

densely sampled domain pools in Section V. Although de-

coding instabilities potentially exist when scaling factors

are allowed to exceed the values in Table II, we do not

observe any such instabilities in our experiments.

F. Fractal Block Coding of Textures

In section II-A we motivated the codebook used by frac-

tal block coders by emphasizing the scale-invariance of iso-

lated straight edges, constant regions, and constant gradi-

ents. More complex image structures lack this determin-

istic self-similarity, however. How can we explain fractal

block coders' ability to compress images containing com-

plex structures? Why should the codebook constructed

from the domain blocks be an e�ective one for regions that

are not self-similar? We address these questions by ex-

amining fractal coding of textures. We model textures as

fractional Brownian motion (fBm) processes as proposed

by Pentland [29].

The fractional Brownian motion texture model captures

an essential feature of natural images, the fact that their

power spectra decay according to a power law. Fractional

Brownian motion processes have spectral decay rates rang-

ing from f�1 to f�3, where f is frequency. Here f�2 cor-

responds to ordinary Brownian motion. Measurements of

spectral decay in natural images show decay rates between

f�2 and f�3. Field[30] hypothesizes that image contrast

is invariant across scale, which implies that image lumi-

nance power spectra decay like f�2. His measurements of

the spectra of natural images show an overall decay rate of

roughly f�2:2.

Although Fractional Brownian motion processes are not

deterministically self-similar, they are statistically self-

similar, i.e. the statistics of scaled subsets are identical to

the statistics of the original set. Flandrin [31] has shown

that the wavelet transform coe�cients of a fractional Brow-

nian motion process are stationary sequences with a self-

similar covariance structure. This means that the code-

book constructed from domain subtrees will possess the

same second order statistics as the set of range subtrees.

Hence for fBm textured regions, the quantization in (4) in-

volves matching two random vectors drawn from sources

with the same second order statistics.

Obtaining a close match between pairs of high dimen-

sional random vectors is an extremely di�cult task unless

the distribution of these vectors is such that the vectors

are highly clustered. Fractal coders can avoid this di�cult

high-dimensional problem to some extent by adaptively us-

ing small range blocks when necessary. Adaptation alone

does not explain the performance of fractal block coders

in complex regions, however. In numerical experiments

we �nd that although the quantized range blocks/subtrees

tend to be smaller in textured regions, they are still con-

siderably larger than the trivial case.

Why should such clustering occur in natural images?

The answer lies in the fact that the Haar transform acts as

an approximate Karhunen-Lo�eve (K-L) transform for or-

dinary Brownian motion, concentrating the energy in the

coarse-scale coe�cients. The result is that for Brownian

motion processes, the Haar subtrees are clustered around

the low-dimensional subspace consisting of subtrees with

all-zero �ne-scale coe�cients. Moreover, because of the

statistical self-similarity of Brownian motion, the second

order statistics of these clusters are the same (up to a con-

stant factor) for range and domain subtrees. Matching ran-

dom subtrees that lie near this low-dimensional subspace

is a much easier problem than matching arbitrary random

subtrees. Statistical self-similarity alone is not enough to

enable fractal coders to perform e�ectively, however. The

clustering e�ects of the Haar transform for a statistically

self-similar process with an increasing power spectrum are

negligible. Thus, our texture model suggests that fractal

block coders owe much of their performance in complex

regions to the decaying power spectra of these regions.

The Haar transform is a less e�ective approximate K-L

transform for fBm processes with rates of spectral decay

corresponding more closely to observed values. When the

decay isO(f�� ) for 2 < � < 3, the autocorrelation function

for a coe�cient lag of n decays as jnj��3 for n large [31].

Tew�k and Kim[32] have shown that for such fBm's, trans-

forms using bases with larger numbers of vanishing mo-

ments yield much better approximations to the K-L trans-
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form. Our texture model therefore motivates the use of

bases with additional vanishing moments. Indeed, numeri-

cal experiments described in Section V show more e�ective

subtree quantization when using wavelets with higher num-

bers of vanishing moments.

An important observation is that quantization in our

texture model entails matching pairs of random vectors.

The process of matching random subtrees is comparable to

quantizing a random vector x with a density function p(x)

using a quantizer with bins distributed according to the

same density p(x). For high resolution entropy constrained

quantization, the optimal distribution of quantizer bins is

very nearly uniform [33] [34]. As we have seen from our tex-

ture model, the distribution of code vectors used by fractal

coders is far from the near-optimal uniform distribution.

Codewords for our fractal block scheme will be unnecessar-

ily densely distributed in high probability regions and too

sparsely distributed in low probability regions. This con-

jecture is borne out in numerical experiments described in

Section V. We �nd a tight clustering of codewords around

the all-zero subtree, which leads to an ine�cient codebook.

V. Results

A. Implementation

Our self-quantization of subtrees scheme possesses a

structure similar to that of the space-frequency coder de-

scribed in [35]. We have two basic methods for quantizing

data: we have a set of coarse-scale wavelet coe�cients that

we quantize using a set of scalar quantizers, and we have a

set of range subtrees that we self-quantize using codewords

generated from domain subtrees. Given a partition of our

data into range subtrees and coarse-scale coe�cients, the

determination of a near-optimal quantization of each set

of data is a straightforward problem. The problem is �nd-

ing the most e�ective partition of the data. We employ

an algorithm that optimizes the allocation of bits between

a set of scalar quantizers and a set of subtree quantizers

following [35].

The source code for our implementation and scripts

for generating the �gures are available from the web site

http://www.cs.dartmouth.edu/�gdavis/fractal/fractal.html.

The implementation is based on the public domain

Wavelet Image Compression Construction Kit, available

from http://www.cs.dartmouth.edu/�gdavis/wavelet/wavelet.html.

B. SQS vs. Fractal Block Coders

Figure 4 compares the peak signal to noise ratios of the

512 � 512 Lena image compressed by two fractal block

coders, by our self-quantization of subtrees (SQS) scheme,

and by a wavelet transform coder. Images compressed at

roughly 64:1 by the various methods are shown in Figure

5 to illustrate the artifacts they generate.

The bottommost line in Figure 4, 'Fractal Quadtree',

was produced by the quadtree block coder listed in the ap-

pendix of [18]. The command line used to generate the

data was \enc -t XX -m 3 -M 7 -w 512 -d 1 -D 0 -f lena.raw

lena.tXX", where XX ranged from 1 to 20. These param-
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Fig. 4. PSNR's as a function of compression ratio for the 512� 512
Lena image using fractal block coding, our self-quantization of
subtrees (SQS) scheme, and a baseline wavelet transform coder.

eters dictate that the encoding uses the disjoint domain

pool to encode range blocks from size 4� 4 to 64� 64 and

that gains are quantized uniformly between -1 and 1 using

5 bits per gain factor. We used a small domain pool here

for comparison with the SQS schemes, which use an equiv-

alent pool. As we discuss below, the performance of this

quadtree scheme improves when larger domain pools are

used. Allowing gains of magnitude 1.2 to 1.4 also yields

marginally better encodings of the Lena image, but con-

vergence is no longer guaranteed. We have restricted the

gains to levels required to ensure image independent con-

vergence. The use of this coder is primarily to provide a

point of reference, since this coder is well-known in the area

of fractal coding.

The next line, 'Haar SQS', was generated by our adap-

tive SQS scheme using the Haar basis. We use the disjoint

domain pool for coding range subtrees corresponding to

blocks with sizes from 4�4 to 64�64. As we see fromFigure

5, the SQS scheme produces dramatically improved results

compared to the quadtree scheme, although both schemes

use exactly the same domain pool. A large part of this

improvement is attributable to the fact that the quadtree

coder uses no entropy coding, whereas the SQS coder uses

an adaptive arithmetic coder. However, a signi�cant frac-

tion of the bitstream consists of domain block o�set indices,

for which arithmetic coding is of little help. Much of the

gain for SQS is because our improved understanding of how

various bits contribute to �nal image �delity enables us to

partition bits more e�ciently between wavelet coe�cients

and subtrees. Further gains come from storing the coarse-

scale image information as quantized wavelet coe�cients

rather than as a set of h�'s. Finally, some of the improve-

ment is also attributable to SQS's ability to use a greater

range of gain factors due to its unconditional convergence.

Fisher notes that the performance of quadtree coders is

signi�cantly improved by enlarging the domain pool [7].

The third line from the bottom of Figure 4, 'Fractal HV

Tree', was produced by a fractal block encoding of rect-
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Fig. 5. The leftmost 512� 512 Lena image has been compressed at 60.6:1 (PSNR = 24.9 dB) using a disjoint domain pool and the quadtree
coder from [18]. The center image has been compressed at 68.2:1 (PSNR = 28.0 dB) using our self-quantization of subtrees (SQS) scheme
with the Haar basis. Our SQS scheme uses exactly the same domain pool as the quadtree scheme, but our analysis of the SQS scheme
enables us to make much more e�cient use of bits. The rightmost image has been compressed at 65.6:1 (PSNR = 29.9 dB) using a
smooth wavelet basis. Blocking artifacts have been completely eliminated.

angular range blocks using rectangular domain blocks [6].

The use of rectangular blocks introduces an additional de-

gree of freedom in the construction of the domain pool and

gives increased exibility to the partitioning of the image.

This strategy uses an enormous domain pool. The recon-

structed images in [6] show the coding to be of high quality

and in fact, the authors claim that their algorithm gives the

best results of any fractal block coder in the literature (we

note that these results have been since superseded by hy-

brid transform-based coders such as those of [12] and [13]).

The computational requirements for this scheme are quite

large due to the size of the domain pool and the increased

freedom in partitioning the image. Image encoding times

were as high as 46 CPU-hours on a Silicon Graphics Per-

sonal IRIS 4D/35. In contrast, the SQS encodings required

roughly 90 minutes apiece on a 133 MHz Intel Pentium PC.

The top line in Figure 4, 'Spline SQS', illustrates an al-

ternative method for improving compressed image �delity:

changing bases. The Haar basis performs poorly for image

compression because quantization of the coe�cients intro-

duces blocking artifacts into the decoded image. Switching

to a smooth basis eliminates these artifacts. Our fractional

Brownian motion texture model predicts that a basis with

more vanishing moments than the Haar will perform better

as an approximateK-L basis for the texture data and there-

fore will provide better encodings. The line 'Spline SQS'

was generated using the 7-9 tap biorthogonal �lter set from

[26]. The domain pool was the same as for the Haar SQS

scheme and the quadtree block coder. As can be seen in

Figure 5, there is a substantial improvement in perceived

image quality over the Haar SQS scheme. The blocking

artifacts, a hallmark of fractal block coding schemes, have

been completely eliminated, and the PSNR has increased

by 1 to 2 dB over the Haar SQS scheme.

For comparison, the fourth line in Figure 4 shows the

performance of the wavelet transform portion of the SQS

coder alone. This baseline wavelet scheme is identical to

the SQS coder except that no subtrees are self-quantized.
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Fig. 6. Self-quantizationof subtrees (SQS) coder performance for the
512 � 512 Lena image using the disjoint domain pool, the half-
overlapping domain pool, and the quarter-overlapping domain
pool. The spline variant basis of [26] was used in all cases.

It uses the same scalar quantizers and the same Lagrange

multiplier bit allocation algorithmas SQS. We see that self-

quantization of subtrees yields a modest improvement over

the baseline transform coder at high bit rates. Our results

below indicate that this improvement is due largely to the

ability of self-quantization to e�ciently represent smooth

regions.

C. Larger Domain Pools

Experiments in [7] show the performance of fractal block

coders improves when larger domain pools are used. Fig-

ure 6 shows PSNR's as a function of compression ratio

for the 512 � 512 Lena image SQS encoded using a dis-

joint domain pool at each scale, a half-overlapping domain

pool at each scale, and a quarter-overlapping domain pool,

D = f(2D�2m; 2D�2n)j0 � m;n < 2N�D+2g, at each

scale. We see that increasing the domain pool size yields

a slight improvement in coder performance. Increasing the

domain pool size results in a considerable increase in com-
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putational complexity. Using the half-overlapping domain

pool increases the quantization search complexity by a fac-

tor of four over the disjoint pool, and using the quarter-

overlapping pool increases the the complexity by a factor

of sixteen over the disjoint pool. When we use these over-

lapping domain pools we no longer are guaranteed decoder

convergence in a �nite number iterations since our basis

is biorthogonal. This adds additional complexity to the

decoding process since convergence requires additional it-

erations. In our experiments we restricted the SQS gain

factors to [�2; 2]. Although these limits are too large to

guarantee convergence, we saw no evidence of convergence

problems with the larger pools.

The use of larger domain pool allows more accurate

quantization of subtrees. The cost of storing the quanti-

zation parameters increases, though, so there is a tradeo�.

While image encodings improve slightly for the Lena image

with increased codebook size, they decrease slightly for the

standard \mandrill" test image. Increased codebook size

does not necessarily lead to performance gains, since adding

additional translates of domain subtrees to the pool leads

to duplicate or near-duplicate codewords in the codebook.

Image features invariant under translation, including the

straight edges and constant regions that motivated fractal

coding in the �rst place, give rise to such duplicate code-

words. Duplicate codewords increase the cost of code words

but contribute nothing to the reduction of distortion. The

result is an ine�cient codebook. This problem becomes

more acute as the domain pool shifts become �ner.

The reason that the use of larger domain pools yields

such di�erent results for block-based coders and SQS

coders has to do with the relative e�ciency with which

block-based schemes and SQS schemes store block o�sets

and scaling function coe�cients. When the codebook is

small, very few large subtrees can be self-quantized ac-

curately. Adaptive block coders quantize primarily small

blocks and must spend a relatively large fraction of their

bit budgets coding the associated DC values. As discussed

in section IV-B, the method used by standard fractal block

coders to encode these DC values is ine�cient. When the

codebook is enlarged, larger blocks can be self-quantized,

and fewer DC coe�cients need to be coded. The shift in

bits from the ine�cient DC quantization to the more e�-

cient block quantization results in improved performance.

Our SQS coder encodes both subtrees and coarse-scale co-

e�cients e�ciently, so increasing the domain pool does not

yield a similar improvement.

D. Zerotrees

Recent wavelet-based image coders [20] [35] have shown

that zerotrees, wavelet subtrees whose coe�cients are all

nearly zero, are a common feature of natural images. The

use of zerotrees allows coders to take advantage of the lo-

calization of image energy in space. Zerotrees are triv-

ially self-similar, so they can be encoded relatively cheaply

via self-quantization. We conjecture that much of fractal

coders' e�ectiveness is due to their ability to e�ectively

represent zerotrees.
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Fig. 7. Baseline wavelet coder performance vs. self-quantization of
subtrees (SQS) with the disjoint domain pool for the 512� 512
Lena image. PSNR's are shown for both unmodi�edand zerotree-
enhanced versions of these coders. The spline variant basis of [26]
was used in all cases.

Fig. 8. The white squares in above images correspond to the self-
quantized subtrees used in compressing the 512� 512 mandrill
image. The squares in the image on the left correspond to the
support of the self-quantized subtrees used in a standard self-
quantization of subtrees (SQS) scheme with a compression ratio
of 8.2:1 (PSNR = 28.0 dB). The squares in the image on the right
correspond to the support of the self-quantized subtrees used in a
zerotree-enhanced SQS scheme with a compression ratio of 8.4:1
(PSNR = 28.0 dB).

We test this hypothesis by examining the results of in-

corporating a separate inexpensive zerotree codeword into

our codebook. We implement this zerotree quantization in

a manner similar to [35] by adding a low-cost codeword for

an all-zero range block to our SQS codebook. Although

zerotree quantization of subtrees is less accurate in general

than self-quantization, zerotrees are much cheaper to code.

In our experiments the addition of zerotrees to our code-

book results in a modest increase in the performance of

our coder. Figure 7 shows the results of the zerotree en-

hancement for the Lena image. Images compressed with

and without zerotrees look similar, but they di�er dramat-

ically in the sets of subtrees that are self-quantized. The

white boxes in the �rst image in Figure 8 show the range

subtrees that are self-quantized when no zerotrees are used.

58% of all coe�cients in the image belong to self-quantized

subtrees. Self-quantization takes place primarily along lo-

cally straight edges and locally smooth regions, with some

sparse self-quantization in the textured fur. This is consis-
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tent with our analysis of the fBm texture model.

The second image in Figure 8 shows the self-quantized

subtrees in a zerotree-enhanced SQS coder. Only 23% of

the coe�cients are contained in self-quantized subtrees,

and these coe�cients are primarily from regions containing

locally straight edges. Most of the self-quantized subtrees

in the �rst image can be closely approximated by zerotrees;

we obtain similar results for other test images.

Adding zerotrees to our baseline wavelet coder leads to

a signi�cant performance improvement, as can be seen in

Figure 7. In fact, the performance of the wavelet coder

with zerotrees is superior to or roughly equivalent to that

of the zerotree-enhanced SQS scheme for all images tested.

On the whole, once the zerotree codeword is added to

the codebook, self-quantization actually diminishes coder

performance. The reason is simple: the gains from self-

quantization do not balance out the increased side infor-

mation costs.

Self-quantization of subtrees is more e�ective than scalar

wavelet quantization for coding self-similar features. As we

observed above, most of these self-quantized subtrees are

zerotrees or can be closely approximated by zerotrees. The

bene�ts of self-quantization are due largely to its relative

e�ectiveness at coding zerotrees. Adding a zerotree code-

word to the baseline wavelet coder provides it with an even

cheaper way to quantize these zerotrees.

Both the SQS coder and the wavelet coder must transmit

side information to indicate for each subtree what kind of

quantization was used. The SQS coder's greater exibility

in quantization results in increased side information costs.

For example, the side information cost for the mandrill

image in Figure 8 for the zerotree-enhanced SQS coder is

2937 bytes. The side information cost for the zerotree-

enhanced wavelet coder at a similar compression ratio is

only 1940 bytes. The increased side information costs eat

up the bene�ts that self-quantization provides for straight

edges. The result is that self-quantization yields constant

or diminished coder performance.

It is important to observe that the structure of the sub-

trees we are using signi�cantly reduces the performance of

the zerotree-enhanced wavelet coder. In adherence to the

Jacquin-style block coder framework, we have limited our

attention to subtrees containing components from all three

subband orientations at each scale. The zerotree/wavelet

coder of Xiong et al. [35] obtains PSNR's of over 1 dB

better than those reported here through the use of ori-

ented zerotrees. The Rinaldo-Calvagno [13] coder treats

coe�cients with di�erent orientations separately, so it too

obtains some advantage over our zerotree structure. How-

ever, the code words in Rinaldo-Calvagno coder do not

extend across multiple scales and as a result they are un-

able to take advantage of the fact that edges and smooth

regions have structures that persist across scales. Whether

using oriented range and domain subtrees yields a substan-

tial improvement in performance remains a topic for future

research.

VI. Conclusion

We began this paper with the question, Why do frac-

tal block coders work? The wavelet framework we have

presented makes the answer much more clear. Up to the

DC component, the block quantization performed by frac-

tal block coders is equivalent to the self-quantization of a

Haar subtree. We have shown that

� Self-quantization is e�ective for quantizing isolated

straight edges and zerotrees because these features are self-

similar. A signi�cant fraction of subtrees in natural images

are well-approximated by zerotrees, suggesting that fractal

coders' ability to encode zerotrees cheaply is a major source

of their e�ectiveness.

� E�ective self-quantization of textures requires that these

textures possess a rapidly decaying power spectrum. Be-

cause of the ine�cient distribution of code words used by

self-quantization, transform coding is more e�ective than

self-quantization for coding textures.

� The use of smooth wavelet bases with 2 or more vanishing

moments for self-quantization results in a substantial im-

provement in coder performance over Haar-based schemes.

The improvement can be seen both in PSNR and in sub-

jective image quality. Smooth bases eliminate blocking ar-

tifacts, and the extra vanishing moments lead to better

transform energy packing properties in textured regions.

A fundamental weakness of fractal block coders is that

the coders possess no control over the codebook. Code-

words are too densely clustered around the very common

all-zero subtree and too sparsely distributed elsewhere.

This dense clustering of near-zerotrees increases codeword

cost but contributes very little to image �delity.

Some authors have addressed the problem of codebook

ine�ciencies by augmenting fractal codebooks [36]. While

this codebook supplementation adds codewords in the

sparse regions, it does not address the problem of overly

dense clustering of code words around zero. At 0.25 bits per

pixel, over 80 percent of all coe�cients in the 512�512Lena

image are assigned to zerotrees by our zerotree-augmented

wavelet coder. Hence only about 20 percent of the frac-

tal coder's codewords are signi�cantly di�erent from a ze-

rotree. This redundancy is costly, since when using self-

quantization we pay a substantial number of bits to di�er-

entiate between these essentially identical zero code words.

Relatively little attention has been paid to this problem of

redundancy. A codebook pruning strategy of Signes [37] is

a promising �rst attempt. An alternative strategy would

be to adaptively eliminate from the domain pool any sub-

trees that are subsets of larger subtrees that have been

quantized to zero.

Our analysis suggests that the primary advantage that

fractal block coders have over simple wavelet transform

coders is their ability to e�ciently represent zerotrees.

Zerotree-augmented wavelet coders share this ability and

are not burdened with the codebook ine�ciencies inher-

ent to the fractal block coders we have described. More-

over, the computational complexity of zerotree-augmented

wavelet coders is an order of magnitude lower than that of

SQS coders. Addressing this problem of codebook ine�-
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ciency is a topic for future research.
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