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ABSTRACT

Why does fractal image compression work? What properties must an image have for fractal block coders to

work well? What is the implicit image model underlying fractal image compression? The behavior of fractal block

coders is clear for deterministically self-similar structures. In this paper we examine the behavior of these coders

on statistically self-similar structures. Speci�cally, we examine their behavior for fractional Brownian motion, a

simple texture model. Our analysis suggests that the properties necessary for fractal block coders to work well

are not so dissimilar from those required by DCT and wavelet transform based coders. Fractal block coders work

well for images consisting of ensembles of locally self-similar regions together with locally stationary regions with

decaying power spectra, local statistical similarity, and local isotropy. Our analysis motivates a generalization of

fractal block coders that leads to substantial improvements in coding performance and also illuminates some of

the fundamental limitations of current fractal compression schemes.

Keywords: fractal image compression, wavelets, self-quantization of subtrees, self-similarity, frac-

tional Brownian motion

1 INTRODUCTION

JPEG and other common image compression are based on a simple transform coder paradigm. Images are

modeled as vectors drawn froma wide-sense stationary random process. Transform coders perform an approximate

Karhunen-Lo�eve (K-L) transform on an image, quantize the resulting coe�cients, and entropy code them. Fractal

image compression, introduced by Barnsley and Jacquin [1][10], is based on very di�erent principles. Fractal

block coders, as described by Jacquin, assume that \image redundancy can be e�ciently exploited through self-

transformability on a blockwise basis" [11]. They store images as contraction maps of which the images are

approximate �xed points. Images are decoded via iterative application of these maps.

In this paper we examine the behavior of fractal block coders for textured regions, as modeled by fractal

Brownian motion processes. We compare their performance to that of transform coders and �nd many similarities.

We show that the ability of fractal block coders to e�ciently exploit deterministic self-similarities in images does

not carry over to the representation of statistically self-similar regions such as fractional Brownian motion texture.

Our analysis does suggest ways in which the performance of fractal block coders can be greatly improved with

little additional complexity.



Our analysis relies on a new wavelet-based analytical framework for block-based fractal compression schemes

�rst introduced in [2]. Within this framework we are able to draw upon insights from the well-established

transform coder paradigm in order to address the issue of why fractal block coders work.

The balance of the paper is organized as follows. Section 2 gives an overview of a basic fractal block coding

scheme. In Section 3 we introduce a wavelet-based framework for analyzing fractal block coding. Using this

framework and a simple texture model we make Jacquin's assumption of \self-transformability" more concrete

and we discuss why fractal block coding works for complex image features.

2 Overview of Fractal Block Coding

In this section we describe a generic fractal block coding scheme based on those in [11][6], and we provide

some heuristic motivation for the scheme. A more complete overview of fractal coding techniques can be found

in [5][12].

Transform coders are designed to take advantage of very simple structure in images, namely that values of

pixels that are close together are correlated. Fractal compression is motivated by the observation that important

image features, including straight edges and constant regions, are invariant under rescaling. Constant gradients

are covariant under rescaling, i.e. rescaling changes the gradient by a constant factor. Scale invariance (and

covariance) presents an additional type of structure for an image coder to exploit.

Fractal compression takes advantage of this local scale invariance by using coarse-scale image features to

quantize �ne-scale features. Fractal block coders perform a vector quantization (VQ) of image blocks. The vector

codebook is constructed from locally averaged and subsampled isometries of larger blocks from the image. This

codebook is e�ective for coding constant regions and straight edges due to the scale invariance of these features.

The vector quantization is done in such a way that it determines a contraction map from the plane to itself of

which the image to be coded is an approximate �xed point. Images are stored by saving the parameters of this

map and decoded by iteratively applying the map to �nd its �xed point. An advantage of fractal block coding

over VQ that it does not require separate storage of a �xed vector codebook.

The ability of fractal block coders to represent straight edges, constant regions, and constant gradients e�-

ciently is important, as transform coders fail to take advantage of these types of spatial structures. Indeed, recent

wavelet transform based techniques that have achieved particularly good compression results have done so by

augmenting scalar quantization of transform coe�cients with a zerotree vector that is used to e�ciently encode

locally constant regions [16].

For fractal block coders to be e�ective, images must be composed of features at �ne scales that are also present

at coarser scales up to a rigid motion and an a�ne transform of intensities. This is the \self-transformability"

assumption described by [11]. It is clear that this assumption holds for images composed of isolated straight lines

and constant regions, since these features are self-similar. That it should hold when more complex features are

present is much less obvious. In section 4 we use a rudimentary texture model and our wavelet framework to

provide a more detailed characterization of \self-transformable" images.

2.1 Image Encoding

We now describe a simple fractal block coding scheme based on those in [11][6]. Let I be a 2N � 2N pixel

grayscale image. Let BJ
K;L be the linear \get-block" operator which when applied to I extracts the 2J � 2J

subblock with lower left corner at (K;L). The adjoint of this operator, (BJ
K;L)

�, is a \put-block" operator that
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Figure 1: We quantize the small range block BR
�I on the right using the codebook vector gLABD

�0I + hBR
�1 ob-

tained from the larger domain block on the left. A averages and subsamples the block, L rotates it, multiplication

by the gain g modi�es the contrast, and the addition of the o�set hBR
�1 adjusts the block DC component.

inserts a 2J � 2J image block into a 2N � 2N all-zero image such that the lower left corner of the inserted block

is at (K;L). We will use capital letters to denote block coordinates and lower case to denote individual pixel

coordinates. We use a capital Greek multi-index, usually �, to abbreviate the block coordinates K;L and a

lower-case Greek multi-index to abbreviate pixel coordinates within blocks.

We partition I into a set of non-overlapping 2R � 2R range blocks. The goal of the compression scheme is to

approximate each range block with a block from a codebook constructed from a set of 2D � 2D domain blocks,

where 0 < R < D � N . Forming this approximation entails the construction of a contraction map from the image

to itself (from the domain blocks to the range blocks) of which the image is an approximate �xed point. We store

the image by storing the parameters of this map, and recover the image by iterating the map to its �xed point.

Iterated function system theory motivates this general approach to storing images, but gives little guidance on

questions of implementation. The basic form of the block coder described below is the result of considerable

empirical work. In Section 3 we see that this block-based coder arises naturally in a wavelet framework.

The range block partition is a disjoint partition of the image consisting of the blocks fBR
K;LIj(K;L) 2 Rg.

Here R = f(2Rm; 2Rn)j0 � m;n < 2N�Rg. The domain blocks from which the codebook is constructed are

drawn from the domain pool, the set fBD
K;LI : (K;L) 2 Dg. A variety of domain pools are used in the literature.

Here we will focus on a disjoint tiling of I, the disjoint domain pool, D = f(2Dm; 2Dn)j0 � m;n < 2N�Dg. For

discussion of more general domain pools, see [3].

Two basic operators are used for codebook construction. The \average-and-subsample" operator A maps a

2J�2J image block to a 2J�1�2J�1 block by averaging each pixel inBJ
� with its neighbors and then subsampling.

We de�ne (ABJ
�I)(k; l) =

1
4
[(BJ

�I)(2k; 2l)+ (BJ
�I)(2k+ 1; 2l)+ (BJ

�I)(2k; 2l+1) + (BJ
�I)(2k+ 1; 2l+1)] where

BJ
�I(k; l) is the pixel at coordinates (k; l) within the subblock BJ

�I. A second operator is the symmetry operator

Lk, 1 � k � 8, which maps a square block to one of the 8 isometries obtained from compositions of reections

and 90 degree rotations.

Range block approximation is similar to shape-gain vector quantization[9]. Range blocks are quantized to a

linear combination of an element from the codebook and a constant block. The codebook used for quantizing

range blocks consists of averaged and subsampled isometries of domain blocks, the set C = fLkA
D�RBD

� I : � 2

D; 0 � k � 8g. Here AD�R denotes the operator A applied D �R times. The contrast of the codewords in C is

adjusted by a gain factor g, and the DC component is adjusted by adding a subblock of the 2N � 2N matrix of

ones, 1, multiplied by an o�set factor h. For each range block BR
�I we have

BR
� I � g�LP (�)A

D�RBD
�(�)I + h�B

R
�1: (1)



Here � : R ! D assigns an element from the domain pool to each range element and P : R ! f1 : : :8g assigns

each range element a symmetry operator index. Ideally the parameters g, h, �, and P should be chosen so that

they minimize the error in the decoded image. The quantization process is complicated by the fact that the

codebook used by the decoder is di�erent from that used by the encoder, since the decoder doesn't have access

to the original domain blocks. Hence errors made in quantizing range blocks are compounded because they a�ect

the decoder codebook. These additional e�ects of quantization errors have proven di�cult to estimate, so in

practice g; h;�, and P are chosen to minimize the l2 quantization error.

2.2 Decoding Fractal Coded Images

The approximations for the range blocks (1) determine a constraint on the image I of the form I � GI +H.

Expanding I as a sum of range blocks we obtain

I =
X
�2R

(BR
� )
�BR

�I

�
X
�2R

g�(B
R
� )
�LP (�)A

D�RBD
�(�)I +

X
�2R

h�(B
R
� )
�BR

�1

= GI +H:

Provided the matrix I �G is nonsingular, there is a unique �xed point solution Ifp satisfying

Ifp = GIfp +H (2)

given by Ifp = (I�G)�1H. Because G is a 22N � 22N matrix, inverting I�G directly is an inordinately di�cult

task. If (and only if) the eigenvalues of G are all less than 1 in magnitude, we can �nd the �xed point solution

Ifp by iteratively applying (2) to an arbitrary image I0. Decoding of fractal coded images proceeds by forming

the sequence

In =GIn�1 +H = GnI0 +

n�1X
k=0

GkH: (3)

In general the image to be coded I is not an exact �xed point of (2), i.e. I = GI + H + E where E is an

error image. We can bound the error in the reconstructed image jjIfp � Ijj in terms of jjEjj; this bound is known

as the collage theorem bound. Although the bound is a weak one, small errors jjEjj are found in practice to yield

small reconstruction errors jjIfp � Ijj. Extensions of the collage theorem bound and a more detailed discussion of

reconstruction errors may be found in [3].

3 A Wavelet Framework

3.1 Notation

The wavelet transform is a natural tool for analyzing fractal block coders since wavelet bases possess the same

type of dyadic self-similarity that fractal coders seek to exploit. In particular, the Haar wavelet basis possesses

a regular block structure that is aligned with the range block partition of the image. We show below that the

maps generated by fractal block coders reduce to a simple set of equations in the wavelet transform domain.

Separable 2-D biorthogonal wavelet bases consist of translates and dyadic scalings of a set of oriented wavelets

 LH(x; y),  HL(x; y), and  HH (x; y) together with translates of a scaling function �(x; y). We will use the



subscript ! to represent one of the three orientations in 
 = fLH;HL;HHg. We will limit our attention to

symmetrical (or antisymmetrical) bases. The discrete wavelet transform of a 2N �2N image I expands the image

into a linear combination of the basis functions in the set WJ = f�J!;k;lj! 2 
; 0 � k; l < 2Jg [ f 
j

k;ljJ � j <

N; 0 � k; l < 2jg. We will use a single lower-case Greek multi-index, usually , to abbreviate the orientation and

translation subscripts of � and  . The coe�cients for the basis functions �
j
k;l and  

j
!;k;l are given by h~�

j
k;l; Ii

and h ~ 
j

!;k;l; Ii, respectively, where
~�
j

k;l and
~ 
j

!;k;l are dual scaling functions and wavelets.

An important property of wavelet basis expansions, especially Haar expansions, is that they preserve the

spatial localization of image features. For example, the coe�cient of the Haar scaling function �Jk;l is proportional

to the average value of an image in the 2J � 2J block of pixels with lower left corner at 2Jk; 2J l. The wavelet

coe�cients associated with this region are organized into three quadtrees. We call this set of trees a wavelet

subtree; coe�cients forming such a subtree are shaded in each of the transforms in Figure 2. At the root of a

wavelet subtree are the coe�cients of the wavelets  J!;k;l, where ! 2 
. These coe�cients correspond to the

block's coarse-scale information. Each wavelet coe�cient h ~ 
j

!;k;l; Ii in the tree has four children that correspond

to the same spatial location and the same orientation. The children consist of the coe�cients of the wavelets of

the next �ner scale,  
j+1
!;2k;2l,  

j+1
!;2k+1;2l,  

j+1
!;2k;2l+1, and  

j+1
!;2k+1;2l+1. A wavelet subtree consists of the coe�cients

of the roots, together with all of their descendents in all three orientations. The scaling function �Jk;l is localized

in the same region as the subtree with roots given by  J!;k;l, and we refer to this �Jk;l as the scaling function

associated with the subtree.

3.2 A Wavelet Transform Domain Analog of Fractal Block Coding

We now describe a wavelet transform domain analog of fractal block coding �rst introduced in [2]. Related

schemes have been described independently in [13] and [19]. The wavelet-based fractal coder of [15] is similar in

spirit but di�ers fundamentally in its goals and implementation.

Fractal block coders approximate a set of 2R � 2R range blocks using a set of 2D � 2D domain blocks. The

wavelet analog of an image block, a set of pixels associated with a small region in space, is a wavelet subtree

together with its associated scaling function coe�cient. We de�ne a linear \get-subtree" operator SJK;L : R2
2N

!

R
22(N�J)�1 which extracts from an image the subtree whose root level consists of the coe�cients of  J!;K;L .

The adjoint of SJK;L is a \put-subtree" operator which maps a subtree to the subtree with root coe�cients

corresponding to  J!;K;L in an all-zero image. For the Haar basis, subblocks and their corresponding subtrees

and associated scaling function coe�cients contain identical information, i.e. the transform of a range block BR
�I

yields the coe�cients of subtree SN�R� I and the scaling function coe�cient h~�N�R� ; Ii. For the remainder of

this section we will take our wavelet basis to be the Haar basis. The actions of the get-subtree and put-subtree

operators are illustrated in Figure 2.

The linear operators used in fractal block coding have simple behavior in the transform domain. We �rst

consider the wavelet analog bA of the average-and-subsample operator A. Averaging and subsampling the �nest-

scale Haar wavelets sets them to 0. The local averaging has no e�ect on coarser scale Haar wavelets, and

subsampling  j yields the Haar wavelet at the next �ner scale,  j+1 , multiplied by 1
2
. Similarly, averaging and

subsampling the scaling function �j yields 1
2
�j+1 for j < N � 1 and 0 for j = N � 1. The action of the averaging

and subsampling operator thus consists of a shifting of coe�cients from coarse-scale to �ne, a multiplication by
1
2
, and a truncation of the �nest-scale coe�cients. The operator bA prunes the leaves of a subtree and shifts all

remaining coe�cients to the next �ner scale. The action of bA is illustrated in Figure 2.

For symmetrical wavelets, horizontal/vertical block reections correspond to a horizontal/vertical reection

of wavelet coe�cients within each scale of a subtree. Similarly, 90 degree block rotations correspond to 90 degree

rotations of wavelet coe�cients within each scale and a switching of the  LH coe�cients with  HL coe�cients.
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Figure 2: We approximate the darkly shaded range subtree SN�R� I using the codebook element g�bLbASN�D�0 I

derived from the lightly shaded domain subtree SN�D�0 I. bA truncates the �nest scale coe�cients of the domain

subtree and multiplies the coe�cients by 1
2 , and

bL rotates it. When storing this image we save the coarse-scale

wavelet coe�cients in subbands of scale 2 and lower, and we save the encodings of all subtrees with roots in scale

subband 3.

Hence the wavelet analogs bLk of the block symmetry operators Lk permute wavelet coe�cients within each

scale. Figure 2 illustrates the action of a symmetry operator on a subtree. Note that the Haar basis is the only

orthogonal basis we consider here, since it is the only compactly supported symmetrical wavelet basis[20]. When

we generalize to non-Haar bases, we must use biorthogonal bases to obtain symmetry and compact support.

The approximation (1) leads to a similar relation for subtrees in the Haar wavelet transform domain,

SN�R� I � g�bLP (�) bAD�RSN�D�(�) I: (4)

We refer to this form quantization of subtrees using other subtrees as the self-quantization of SN�R� . The o�set

terms h� from (1) a�ect only the scaling function coe�cients because the left hand side of (4) is orthogonal to

the subblocks of 1. Breaking up the subtrees into their constituent wavelet coe�cients, we obtain a system of

equations for the coe�cients of the  j in SN�R� I,

h ~ j ; Ii �
g�

2D�R
h ~ 

j�(D�R)
0 ; Ii =

g�

2D�R
hT( ~ j ); Ii: (5)

Here T is the map induced by the domain block selection followed by averaging, subsampling, and rotating. We

obtain a similar relation for the scaling function coe�cients,

h~�N�R� ; Ii �
g�

2D�R
h~�N�D

�(�)
; Ii+ h�

=
g�

2D�R
hT(~�N�R� ); Ii+ h� (6)

From the system (5) and (6) we see that, roughly speaking, the fractal block quantization process constructs a

map from coarse-scale wavelet coe�cients to �ne. It is important to note that the function T in (5) and (6) does

not necessarily mapWN�D to WN�D for domain pools other than the disjoint domain pool. The reason is that

translation of domain blocks by distances smaller than 2D leads to non-integral translates of the wavelets in their

corresponding subtrees. This issue is addressed in more detail in [3].

4 Fractal Block Coding of Textures

In section 2 we motivated the codebook used by fractal block coders by emphasizing the scale-invariance

(covariance) of isolated straight edges, constant regions, and constant gradients. More complex image structures



lack this deterministic self-similarity, however. How can we explain fractal block coders' ability to compress

images containing complex structures? Why should the codebook constructed from the domain blocks be an

e�ective one for regions that are not self-similar?

4.1 Fractional Brownian Motion

Although complex image features such as textures are not in general self-similar, they do tend to possess

characteristics that can be exploited by fractal coders. Because of the physical structure underlying natural

images, pixel values are far from independent, especially for pixels that are close together. The continuity of the

physical objects that give rise to natural images produces a local pixel covariance structure with correlations that

decrease with pixel separation. Pentland [14] proposes a fractional Brownian motion (fBm) texture model that

mimics this type of covariance structure. Fractional Brownian motion models have proved quite successful for

generating synthetic landscapes and clouds in computer graphics applications [21] which lends additional support

to using fBm as a model for complex image structures. An alternative but closely related image model that is

used to motivate the use of the discrete cosine transform in JPEG is a �rst order Gauss-Markov model with high

correlation. The form of this model is x[n] = ax[n� 1]+ u[n] where x[n] and x[n� 1] are adjacent pixels and the

u[n] are i.i.d. Gaussian random variables. When a = 1 this process is in fact ordinary Brownian motion.

A random process is x(t) is said to be wide-sense statistically self-similar with parameter H if its second order

statistics scale according to the relations

E[x(t)] = a�HE[x(at)] (7)

E[x(s)x(t)] = a�2HE[x(as)x(at)]: (8)

Fractional Brownian motion is a self-similar, zero-mean Gaussian random process where 0 < H < 1. When

the Hurst exponent H = 1
2 we have ordinary Brownian motion. A key property of fBm processes is that their

measured power spectra decay as j!j�, where  = 2H + 1.

Natural images observe a similar power-law spectral decay. Measurements of spectral decay in natural images

show decay rates between !�2 and !�3. Field[4] hypothesizes that image contrast is roughly invariant across

scale, which implies that image luminance power spectra decay like !�2. His measurements of the spectra of

85 photographs of natural scenes show an overall decay rate of roughly !�2:2. Voss[21] claims that shapes

with fractal dimension of 0.2 to 0.3 greater than their Euclidean dimension are particularly common in nature;

fractional Brownian motions exhibiting such Hausdor�-Besicovitch dimensions possess spectral decay rates of

!�2:4 to !�2:35, respectively.

Flandrin [7] has shown that the wavelet transform coe�cients of a fractional Brownian motion process are

stationary sequences with a self-similar covariance structure. This means that the codebook constructed from

domain subtrees will possess the same statistics as the set of range subtrees. Hence for fBm textured regions, the

quantization in (4) involves matching two random vectors drawn from sources with the same statistics.

Obtaining a close match between pairs of high dimensional random vectors is an extremely di�cult task

unless the distribution of these vectors is such that the vectors are highly clustered. Fractal coders can avoid

this di�cult high-dimensional problem to some extent by adapting the size of the range blocks. Quantization

becomes much easier as the range block size decreases since the dimension of the problem is reduced. In the

extreme case, single pixel range blocks are trivial to quantize using (1) since setting g� = 0 turns (1) into a scalar

quantization. Adaptation alone does not explain the performance of fractal block coders in complex regions,

however. In numerical experiments we �nd that although the quantized range blocks/subtrees tend to be smaller

in textured regions, they are still considerably larger than the trivial case, often containing 15 coe�cients or more

Finding a close match between a random 15-dimensional range subtree and a random vector from our relatively

small codebook is extremely unlikely unless both range and domain subtrees are tightly clustered.



Why should such clustering occur in natural images? Understanding this is the key to explaining the per-

formance of fractal block coders in textured regions. The answer lies in the fact that the Haar transform acts

as an approximate Karhunen-Lo�eve (K-L) transform for ordinary Brownian motion, concentrating the energy

in the coarse-scale coe�cients. One can show that the variances of the Haar wavelet coe�cients decay in scale

as 2�2j [22]. The result is that for Brownian motion processes, the Haar subtrees are clustered around the

low-dimensional subspace consisting of subtrees with all-zero �ne-scale coe�cients. Moreover, because of the

statistical self-similarity of Brownian motion, the covariance structures of these clusters are the same (up to a

constant factor) for range and domain subtrees. Matching random subtrees that lie near this low-dimensional

subspace is a much easier problem than matching arbitrary random subtrees. The problem is made easier still

by the fact that the human visual system is less sensitive to high frequency errors than to low.

We emphasize that statistical self-similarity alone is not enough to enable fractal coders to perform e�ectively.

For example, we can construct a process that is statistically self-similar over the range of frequencies accessible by

our sampling for which wavelet coe�cient variances increase for �ne scales. Although this process is self-similar,

the clustering e�ects described above that enable fractal block coding to function e�ectively have a negligible

impact here. Thus, our texture model suggests that fractal block coders owe much of their performance in

complex regions to the decaying power spectra of these regions. Additional characteristics that contribute to

subtree clustering and therefore to fractal coder performance include statistical self-similarity, local stationarity

(since our codebook contains translates of domain subtrees), and local isotropy (since the codebook contains

isometries of domain subtrees).

4.2 Improving Fractal Block Coders

The Haar transform is not very e�ective at decorrelating fBm processes with rates of spectral decay corre-

sponding more closely to observed values. When the decay is O(!��) for 2 < � < 3, the autocorrelation function

for a coe�cient lag of n decays as jnj��3 for n large [7]. Tew�k and Kim[18] have shown that for such fBm's,

wavelet transforms for bases with 2 or more vanishing moments yield much better approximations to the K-L

transform than does the Haar basis. Our texture model therefore motivates the use of bases with additional

vanishing moments. Although our development in 3 focused on the Haar basis, there is no reason we cannot re-

place this basis with a di�erent symmetric, biorthogonal wavelet basis. Indeed, numerical experiments in [3] show

dramatic improvements in coder performance when using wavelets with higher numbers of vanishing moments

than the Haar basis.

An important observation is that quantization in our texture model entails matching pairs of random vectors.

Although the clustering of subtrees makes reasonably accurate quantization of high dimensional subtrees possible,

the codebook vectors are unlikely to be distributed in an optimal fashion. Analysis by Gersho [8] of asymptotic

high resolution vector quantization with an entropy constraint reveals that for high dimensional VQ's the optimal

quantizer is very close to a uniform quantizer.

The codebook generated by fractal block coders for fractional Brownian motion textured regions is far from

uniform. On the contrary, code vectors are tightly clustered around the origin. Although having a free gain

parameter leaves open the possibility of spreading the codebook out, the restrictions on the gain parameter

imposed by convergence requirements for general domain pools limit its e�ect. A comparison with the results of [8]

suggests that codewords for our fractal block scheme will be unnecessarily densely distributed in high probability

regions of the space of subtrees and too sparsely distributed in low probability regions. This conjecture is borne

out in our numerical experiments, described in [3] in which a tight clustering of codewords is found around the

all-zero subtree, leading to an ine�cient codebook.

A second way, then, in which fractal block coders can be improved is by modifying the codebook to eliminate

codeword duplication arising from the overly dense clustering of codewords around all-zero subtrees. Signes [17]

has suggested optimizing fractal codebooks by pruning them before quantizing. Such a strategy can easily be



applied to our self-quantization scheme

5 CONCLUSION

Our analysis of the fBm texture model suggests that the central \self-transformability" assumption used to

motivate fractal block coders may be restated as the assumption that images consist of ensembles of regions that

are locally scale-invariant together with locally stationary regions with decaying power spectra, local statistical

similarity, and local isotropy. Our texture model motivates the use of wavelets with more vanishing moments

than the Haar basis.
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