
Fast Lossy Internet Image Transmission

John M. Danskin Geo�rey M. Davis Xiyong Song

Dartmouth College

6211 Sudiko� Laboratory

Hanover NH, 03755 USA

+1-603-646-2206
fjmd,gdavis,xsongg@cs.dartmouth.edu

ABSTRACT

Images are usually transmitted across the Internet using

a lossless protocol such as TCP/IP. Lossless protocols

require retransmission of lost packets, which substan-

tially increases transmission time. We introduce a fast

lossy Internet image transmission scheme (FLIIT) for

compressed images which eliminates retransmission de-

lays by strategically shielding important portions of the

image with redundancy bits. We describe a joint source

and channel coding algorithm for images which min-

imizes the expected distortion of transmitted images.

The algorithm e�ciently allocates quantizer resolution

bits and redundancy bits to control quantization errors

and expected packet transmission losses. We describe

an implementation of this algorithm and compare its

performance on the Internet to lossless TCP/IP trans-

mission of the same images. In our experiments, the

FLIIT scheme transmitted images �ve times faster than

TCP/IP during the day, with resulting images of equiv-

alent quality.

KEYWORDS

forward error correction, image compression, image

transmission, Internet, lossy transmission, World Wide

Web.

1 INTRODUCTION

World Wide Web requests are currently estimated to

comprise some 25% of all bytes sent over the Internet.

This fraction is growing rapidly, and WWW requests

are projected to become the single largest consumer of

Internet bandwidth in late 1995[7]. Images, most of

which are examined for a only a few seconds, undoubt-

edly constitute the bulk of the 10 terabytes of monthly

Web requests. For such interactive applications as web

browsers, the responsiveness gained from rapid image

transmission is more important than perfect image �-

delity, since relatively few images are closely examined,

and because many are already distorted by compression.

The usual method for transmitting images over the

Internet is to �rst compress the images using a lossy

scheme such as JPEG, and then to transmit them across

the intrinsically lossy Internet using the lossless TCP/IP

protocol. JPEG and related lossy schemes are very sen-

sitive to bit errors and hence require lossless transmis-

sion. The price paid for lossless transmission over a

lossy medium is excessively lengthy transmission times

due to retransmissions of lost packets. A more e�cient

means of transmitting the data is via some form of re-

dundant transmission (forward error correction) which

will make serious transmission errors unlikely. Redun-

dancy must be applied selectively, however, since the

addition of redundancy increases the amount of infor-

mation to be transmitted.

Lossless transmission schemes are even more problem-

atic for Internet video broadcasting. Retransmission is

impractical with broadcasting because the receivers will

not in general experience the same losses. A broadcaster

attempting to respond to all of these di�erent losses will

quickly be overwhelmed. Again, what we need to cope

with packet losses is some form of forward error correc-

tion.

Some of the bits resulting from JPEG compression

and other schemes are not perceptually as important

as some of the other bits. Flipping high order bits in

the DC channel makes a big di�erence. Flipping low

order bits in the �ne detail channel makes almost no

di�erence. Protecting these bits equally is not e�cient.

FLIIT uses a subband compression scheme with a

Lagrange multiplier technique to allocate bits to cod-

ing subband data and to forward error correction. Bits

devoted to image data give us an image to transmit,

and bits devoted to forward error correction increase

the likelihood of the image arriving intact. FLIIT allo-

cates bits from a given budget so that image distortion,

resulting from the combined e�ects of compression and

transmission losses, is minimized. The result is that for-

ward error correction bits are concentrated in subbands

where losses would be catastrophic, while less important

subbands receive less protection.

FLIIT also addresses network issues such as rate and

congestion control, and startup. FLIIT allocates a �xed

number of bits between redundancy and data depending

on the expected loss rate. When the loss rate is high,

bits are shifted from data to redundancy, but the total

number of bits transmitted remains constant. During

heavy congestion when packet loss rates are high, TCP

retransmits more and more packets. This positive feed-

back worsens congestion. FLIIT can avoid this positive

feedback by sending packets exactly once using a �xed

total number of bits, trading quantizer resolution for

forward error correction according to current network

conditions.

The bu�er capacity of the Internet between any two

well separated nodes is usually greater than the size of

a well compressed image. Sending at a rate appropri-

ate for such a connection, the server could transmit the

entire image in less than one round-trip time. This is

impossible with TCP because TCP starts up each con-

nection slowly, taking many round trips to get up to full

speed. This is �ne for megabyte transfers, but inappro-

priate for 8 kilobyte images. We propose that the FLIIT

server remember e�ective transfer rates across connec-

tions, e�ectively removing slow startup as an issue.

An important issue for lossy protocols is determining

when to stop waiting for data packets that may have

been lost or delayed. If we don't wait long enough, we

lose image data. On the other hand, if we wait too

long, we lose responsiveness. We describe a method for

incorporating the optimization of the waiting time into

our resource allocation algorithm.

1.1 Related Work

A number of strategies have been explored for incor-

porating redundancy into network packets. Turner and

Peterson [16] propose a scheme in which errors are cor-

rected by making use of naturally occurring redundancy

within images. Image pixels are reordered for transmis-

sion in such a way that packet losses cause the loss of

isolated pixels rather than large contiguous blocks of

pixels. Missing pixels are reconstructed by applying a

�lter to their surviving neighbors. This technique can

hide a limited number of missing packets since there

is usually a high correlation between neighboring pix-

els. A network video transmission scheme proposed by

Karlsson and Vetterli [8] also makes use of naturally oc-

curring image redundancy for error correction. Using

intrinsic image redundancy to correct losses is problem-

atic, since the number of losses that can be sustained

is highly image dependent. Furthermore, when e�cient

compression schemes are used, very little usable redun-

dancy remains for error correction.

Better control of transmission errors is obtained by

adding redundancy bits to the bitstream rather than

relying solely on naturally occurring redundancy. Bier-

sack [3] evaluates the e�ect of adding redundancy at a

�xed rate to video transmissions over ATM networks.

As we discuss below, this �xed rate addition of redun-

dancy is ine�cient, and indeed [3] obtains mixed results.

For heterogeneous tra�c scenarios the loss rates were

reduced by several orders of magnitude, but for more

homogeneous tra�c the performance was unchanged or

worsened. In the homogeneous scenarios, the increase in

the network load from the transmission of redundancy

bits caused an increase in the loss rate not compensated

for by the error correction.

A more e�ective method of adding redundancy is joint

source/channel coding. Fixed redundancy rate strate-

gies are ine�cient for image transmission because bits

in the compressed image do not all have the same e�ect

on image quality. Joint source/channel coding schemes

such as the FLIIT scheme presented in this work assign

levels of redundancy to portions of the compressed im-

age according to their relative contributions to image

�delity. Our experiments show that the control of re-

dundancy achieved by FLIIT yields substantial improve-

ments in image quality over non-adaptive schemes.

Similar techniques of joint source/channel coding for

continuous bitstreams have been developed in Tanabe

and Farvardin[14]. The error calculations for these

continuous streams are extremely di�cult, and the al-

gorithms presented rely on computationally expensive

simulations during bit allocation. FLIIT's network

packet implementation uses a simple and fast allocation

scheme.

A related source/channel coding scheme for networks,

Priority Encoding Transmission (PET), has been devel-

oped by Albanese et al [1][9]. The implementation of

PET for MPEG allows the user to set di�erent levels

of error protection for di�erent portions of the MPEG

stream, but unlike FLIIT provides no explicit mecha-

nism for allocating these levels. The level of redundancy

in PET a�ects the network packet size, so in some net-

works PET may have less
exibility than FLIIT in spec-

ifying a level of redundancy.

The layered transmission schemes in Garret and Vet-

terli [6] and Posnak et al [11] also make use of joint

source/channel coding ideas. Layered schemes require

networks which treat packets di�erently according to

their priorities. Visually important data is sent with a

high priority and experiences a small loss rate; less im-

portant data has a low priority and is the �rst to be

discarded by switches during congestion. Our FLIIT

scheme, in contrast, requires no prioritization of pack-

ets by the network and can function on any network

supporting a simple datagram protocol.

The contribution of our FLIIT scheme is to provide a

simple, low-complexity mechanism for obtaining a near-

optimal partitioning of bits between image quantization

and redundancy for a given set of image transform quan-

tizers, a parity protection scheme, and a packet loss

model. We describe in detail an implementation of the

algorithm, demonstrate its e�ectiveness for image trans-

mission on the Internet and its robustness under heavy

loss conditions.

1.2 Outline

Section 2 describes the subband compression scheme we

use. Section 3 outlines the allocation bits for data rep-

resentation and protection. Section 4 gives details for

implementation. Sections 5 presents experimental re-

sults, and Section 6 concludes with a discussion.

2 IMAGE COMPRESSION

2.1 Subband Coding

We use a simple wavelet transform coding scheme to

compress images for transmission. We perform a dis-

crete wavelet transform on an image, quantize the coef-

�cients using uniform quantizers, and entropy-code the

resulting coe�cients using an arithmetic coder. The res-

olution of the quantizers is determined by a Lagrange

multiplier procedure we describe below. We use the 7/9-

tap biorthogonal wavelet from [17] for our experiments

below.

The FLIIT scheme can easily be modi�ed to work

with DCT-based schemes such as JPEG. We have cho-

sen to work with wavelet-based coder because of its sim-

plicity and superior performance. Our low-complexity

scheme yields PSNR's for the 512 � 512 Lena image

within 0.3 to 0.9 dB of state of the art coders [12].

2.2 Bit Allocation

The discrete wavelet transform partitions an image into

a set of subbands ranging from �ne scales (high fre-

quency) to coarse (low frequency). Typically the bulk

of the visually important information is concentrated in

the coarse-scale subbands, with the �ne-scale subbands

contributing mostly at sharp edges. We obtain a com-

pressed image by �nely quantizing coe�cients that con-

tribute heavily to image �delity and coarsely quantizing

others. Determining the resolutions for each subband

is basically a problem of resource allocation. We have

a tradeo� between quantization error and total storage

requirements, and we must allocate quantizer bins to

obtain minimal distortion for our given bit expenditure.

Let Dj(q) be the sum of the squared errors incurred

in quantizing each wavelet coe�cient in band j to q bits,

and let Cj(q) be the cost of storing the entropy-coded

quantized values. We use the mean squared error as our

measure of distortion to allow comparison to competing

algorithms, but the scheme we describe will function

equally well with perceptually weighted metrics such as

that of [10]. For an image decomposed into n subbands,

our goal is to �nd a vector q = (q1; q2; : : : ; qn) of quan-

tizer bin allocations which minimize the total distortion

Dtotal(q) =
Pn

j=0Dj(qj) subject to the constraint that

the total cost in bits, Ctotal(q) =
Pn

j=0Cj(qj) must be

less than or equal to some given bit budget Cmax. In ad-

dition, the components of qmust all be positive integers,

and for practical reasons we impose an upper bound on

the components of q. Thus we seek a minimization over

q 2 Q where Q is some set of valid integer-valued quan-

tizer bin allocations.

Shoham and Gersho [13] describe an algorithm which

solves precisely this problem. They show that any un-

constrained minimum of Ctotal(q) + �Dtotal(q) is also

the solution to a constrained problem of the form we

require. These unconstrained problems are much easier

to solve, but we must determine which value of � yields

the appropriate constrained problem. The constrained

problem is thereby transformed into a search through

a family of unconstrained problems. The algorithm in

[13] gives optimal or near-optimal bit allocations for our

problem.

In our implementation, we use a uniform quantizer for

subband coe�cients. The limits of the quantization are

determined by the range of the coe�cients, and the res-

olution is taken from the set f2k � 1g0�k�K for a �xed

positive K. We know a priori that the wavelet coe�-

cients will be distributed roughly symmetrically around

0, so we restrict ourselves to odd numbers of quantizer

bins to ensure that the very frequent near-zero coe�-

cients will not be divided into two bins. We �nd in

numerical experiments that allowing qj to assume inter-

mediate values does not give a substantial improvement

in performance. For a 2N � 2N image, the minimiza-

tion algorithm iteratively searches through an array of

size (3N + 4)K, and convergence is typically achieved

in roughly 30 iterations. The complexity of the alloca-

tion algorithm is quite small with respect to that of the

transform and the entropy coding.

3 CHANNEL CODING AND EXPECTED IMAGE

DISTORTION

3.1 Joint Source-Channel Coding

The goal of our compression scheme is to minimize the

image distortion incurred from quantizing transform co-

e�cients. Transmission of an image over a network in-

troduces a second source of distortion: network packet

losses. Our compression scheme controls quantization

error by adaptively allocating quantizer resolution. In

the same way, we can control packet loss errors by se-

lectively adding redundancy to our bitstream.

Traditionally the costs and distortions associated with

quantization and transmission have been treated sepa-

rately. This separation is motivated by Shannon's joint

source channel coding theorem [5], which states that

source coding followed by channel coding can be made

to be as good as any single-stage source/channel coding

procedure. Shannon's result (which is asymptotic and

requires in�nite computational resources) is not appli-

cable in our case, since it deals with the problem of

transmitting an in�nite bitstream losslessly. In fact, as

our experiments show below, separate source and chan-

nel coding is ine�cient for lossy transmission.

We have already incurred loss during compression and

are willing to accept a little more during transmission,

provided that we lose bits which are visually less impor-

tant. The channel coder needs access to the source to

know the relative values of the bits. We can very eas-

ily combine both quantization and transmission errors

into our cost and distortion functions above and use our

allocator to �nd an e�cient distribution of quantizer

resolution and redundancy bits.

The problem we address is that of transmitting im-

ages as a collection of packets of bits of a maximum size

K over a network. The class of network protocols we

consider has two important properties.

� Packets may be delivered out of order, so each

packet contains a unique identi�er.

� The contents of all packets are veri�ed during trans-

mission.

Packets are lost for one of two reasons: a node some-

where on the network runs out of bu�er space and drops

the packet, or the packet is corrupted and fails a veri�ca-

tion procedure somewhere in transit. Because of the �rst

property, we know exactly which packets have been lost.

Because of the second property, we can assume that all

packets which are delivered are error-free because they

have passed the protocol's veri�cation procedure.

We add redundancy to our transmission by adding

parity bits to our data stream at a rate which depends

on the current subband. Since we can tell which packets

were lost, a single block of parity bits can protect a

group of any number of blocks of data against single-

packet loss. Given a group of data blocks, a parity block

is set to the exclusive-or of the blocks in the group. Any

single lost block can be reconstructed as the exclusive-or

of the survivors. There is a tradeo� between protection

and cost. We can obtain greater protection of data by

decreasing the size of the groups protected by parity

blocks, but this increased protection comes at the price

of having to transmit the additional parity blocks. Our

goal is to allocate quantizer bins and parity blocks to

subbands so that we minimize the expected distortion of

the image.

In practice, network packet losses occur in bursts. We

send our packets in random order so that the probabil-

ity of packet losses within parity groups can be approx-

imated as being independent (supposing that the ex-

pected length of a burst is less than the size of a trans-

mission). For our optimization, then, we assume that

packets are lost independently with a known probabil-

ity ploss. We can control the variance of our distortion

by adjusting the probability of loss assumed by the op-

timizer. Increasing the assumed probability of loss be-

yond the network's true packet loss rate has the e�ect

of shifting bits from data to redundancy, thus increasing

the quantization distortion at a given bit-rate, but also

increasing the degree of protection from lost packets.

Since the only source of variance in the expected distor-

tion is lost packets, increasing the degree of redundancy

will reduce the variance and increase image consistency.

We emphasize that parity-protection is not the only

form of redundancy which will work with our optimiza-

tion scheme; we have chosen it for simplicity. More so-

phisticated coding techniques which o�er a better ra-

tio of unrecoverable loss rate to coding overhead exist.

These schemes will still �t into the FLIIT expected dis-

tortion framework because there will always be a trade-

o� between coding overhead and the unrecoverable loss

rate that can be exploited by the bit-rate allocator.

3.2 Expected Distortion

Data blocks are grouped together in one of three ways.

Multiple data blocks are shielded by a single parity

block, a single data block is replicated multiple times, or

data blocks are unshielded. Consider a subband consist-

ing of n data blocks. Let Dq be the average quantization

error incurred per block, let Dm be the error incurred

in replacing all coe�cients in a data block by the quan-

tized subband mean, and let Dz be the error incurred

in replacing all coe�cients in a data block by zero. We

have Dq � Dm � Dz , so that zero-replacement is the

worst-case scenario.

Data and parity blocks from each subband are dis-

tributed so that no two blocks from the same band are

contained in the same network packet. Hence losses

of data blocks are independent events. Every success-

fully transmitted or lost-but-recoverable block in a data

group produces an error of Dq on average. If the sub-

band mean is available (i.e. if at least one packet from

the group is successfully transmitted), lost blocks pro-

duce an average error of Dm; otherwise lost blocks pro-

duce an average error of Dz.

The expected distortion for a band consisting of n

data blocks is

E(D) = nDq + npunrecoverable(Dm �Dq)

+ np
n
unrecoverable(Dz �Dm) (1)

where punrecoverable is the probability of an unre-

coverable packet loss. For unshielded data blocks,

punrecoverable is simply ploss, the probability of losing

a packet. In the case of replicated blocks, a loss will be

unrecoverable only if all copies are lost. Hence, in this

case punrecoverable = pmloss, where m is the total num-

ber of copies of each block transmitted. For subbands

in which each k blocks are shielded by a single parity

block, the probability of losing any single block unre-

coverably is punrecoverable = ploss[1 � (1 � ploss)
k], the

probability of losing that block and at least one of the

other k blocks. In our packet loading scheme we impose

the restriction that no 2 blocks from the same subband

may occupy the same packet, so block losses are truly

independent.

Let rj indicate the manner of parity shielding for the

subband j. We replace the cost and distortion func-

tions Cj(qj) and Dj(qj) with the functions Ĉj(qj; rj)

and D̂j(qj; rj) which incorporate the cost of the parity

packets and the expected distortion incurred in trans-

mission. The new cost function Ĉj(qj ; rj) will equal the

old Cj(qj) plus the number of bits used for the parity

blocks. The new distortion function D̂j(qj ; rj) is ob-

tained from one of the three expected distortion func-

tions derived above. We now solve the constrained min-

imization problem as before, using these new cost and

distortion functions.

4 IMPLEMENTATION

4.1 Encoding

A description of the encoding process follows:

1. Apply a wavelet subband decomposition to the im-

age. In a complete wavelet decomposition, the

coarse-scale subband would be a single pixel value

corresponding to a weighted average of all pixels in

the image. Because of the necessity of maintaining

some header information with each subband, it is

cheaper to stop the transformation at some point

short of a single pixel (say a 32 � 32 coarse-scale

image), and to transmit this image untransformed.

This base image is referred to as the coarse scale

band, or band 0. It corresponds roughly to the DC

band of a JPEG image. The other (detail) bands

are re�nements of this image, each successive band

providing the information necessary to double the

image resolution.

2. Assign quantizer redundancies and levels of parity

according to the algorithm described in the previ-

ous section.

3. For transmission, it makes sense to distribute each

band across as many packets as possible using a

pixel interleaving scheme like the one described

in [16] so that a lost packet will not cause a catas-

trophic band loss. Distributing subbands does not

reduce expected distortion (because the chance of

some loss in a given subband is increased by distri-

bution), but it reduces the variance in the expected

distortion by increasing the population subject to

the transmission experiment.

This desire for subdivision is tempered by the need

for a descriptive header for each independent image

block. Since image transmission is lossy, and any

subset of network packets could arrive, we added a

header to each block which describes the block in

enough detail to permit (lossy) recontruction of the

subband corresponding to the block.

We settled on image blocks of up to about 150 bytes

each. Header information worked out to about 15

bytes per block, but because there were many small

subbands that were not broken into blocks, roughly

20% of the compressed image ends up as header

information.

A future implementation might localize this header

information in a few heavily shielded packets, which

would be more e�cient since much of the header

information is replicated between blocks from the

same subband.

4. The compressed wavelet coe�cients follow the

header in the compressed block. The wavelet co-

e�cients are compressed using adaptive arithmetic

coding. Arithmetic coders emit � � log
2
pi bits

where pi was the predicted probability of the ith

event. In adaptive coding, the relative frequencies

of past events, as remembered in histograms, are

used to estimate the probability of future events

for the purposes of coding. So that no event is pre-

dicted with zero probability, histograms are usually

initialized so that all possible events have frequency

one. As the input is read, the histogram adapts

to the actual frequencies encountered. For a large

dataset, the inertia represented by the initial
at

histogram is unimportant.

By blocking, we have reduced the amount of time

available for the histogram to adapt to the input

distribution. To compensate for this e�ect, we use

the following scheme:

� Initially, there are two histograms, one
at

histogram (F) with every possible value ini-

tialized to one, and one empty histogram (H)

with a single symbol, the escape symbol with

initial probability and frequency equal to 1.

� Whenever an input symbol appears with non-

zero probability (frequency) in histogram H, it

is coded using histogram H, and its frequency

in histogram H is incremented.

� Whenever an input symbol appears with zero

probability in histogram H, the escape symbol

is coded using histogram H, and the symbol is

coded using histogram F (in which it must ap-

pear). This new symbol is added to histogram

H with frequency 1, and histogram F is never

again used to code this symbol.

This two histogram scheme adapts much more

quickly than the single histogram scheme. Similar

schemes are used for blending high order contexts

in text coding [2], but we are unaware of a prior use

of this scheme in image coding.

5. After the compressed blocks are generated, we add

redundancy. The blocks are sorted by protection

level and size, in order of decreasing protection

and size. Blocks requiring replication are simply

replicated. A given block and its replicas will all

have the same parity group number, which will pre-

vent them from being included in the same network

packet.

Blocks requiring the same level of parity protec-

tion will be grouped together by the sort. Usually

it will not be possible to meet the requirements

exactly. For instance, there might be just 4 data

blocks which want to be in a group of 5 data blocks

protected by a parity block. In this case, we use a

greedy algorithm to promote a block with less strin-

gent protection requirements (if one is available) to

round out the group. This promotion procedure is

more e�cient than the alternative of leaving parity

groups un�lled, and e�ectively promoting all of the

members of a group to a higher level of protection.

Sorting by size helps to keep similarly sized blocks

in the parity group, which is valuable because the

parity block must be as large as the largest data

block in the group.

6. Finally, we have compressed data and parity blocks

ready for transmission. If (when) the network

is congested, throughput will be gated by router

scheduling, rather than by bandwidth. Routers

schedule communication channels using a round

robin algorithm which is insensitive to packet size.

This means that users of packets smaller than the

largest packet transmitted by the network will pay

a heavy throughput penalty for their poor judge-

ment. Conversely, if a user sends such large packets

that they are fragmented en-route, then they will

lose their entire large packet whenever a single frag-

ment is lost, also resulting in reduced throughput.

The largest Internet packet which is guaranteed not

to be fragmented is 576 bytes [15].

We use the largest-�rst �rst-�t heuristic to pack

blocks into 550 byte UDP packets. Additional

restrictions are that blocks from the same parity

group are not allowed in the same packet, and

blocks from the same band are not allowed in the

same packet.

4.2 Decoding

Decoding is essentially encoding in reverse, except that

all the bit allocation decisions have been made, and

some of the packets may have been lost.

1. Read the surviving packets.

2. Sort into parity groups.

3. If there are any parity groups with one missing

member, reconstruct the missing member.

4. Decode all of the data blocks into their respective

subbands. When decoding a coarse band block, if

it is the �rst one, �ll in the whole band with val-

ues from this block so that if any other blocks from

this band turn out to be missing, their values will

be replaced by nearby values from this block. Miss-

ing detail band values are replaced by the subband

means.

5. Reconstruct the image.

4.3 Rate Control

The Internet is a shared medium. Programs have to

control the rate at which they send data or they risk

causing congestion in the network, which results in lost

packets, and reduced performance for everybody. The

TCP protocol implemented in the RENO release of BSD

Unix controls its rate by starting out very slowly, slow-

ing down when packets are dropped (indicating conges-

tion), and speeding up otherwise. The problem with

this strategy is that it induces a certain level of packet

losses on the Internet.

A second method for rate control is to compare ex-

pected throughput rates with actual throughput rates.

Whenever the rate of packet reception drops below the

rate of packet transmission, the network must be stor-

ing or dropping the excess data. This is the strategy

implemented in Brakmo et al's TCP Vegas protocol [4].

Neither of these rate control schemes is appropri-

ate \as is" for the transmission of compressed images

across the Internet. The problem is that compressed

images are much smaller than the dataset size required

to achieve steady state transmission. In [4] we see a de-

lay of 2.5 seconds before steady state and heavy packet

0 6 12 18 24

Hour of Day (US Eastern Time)

0

10

20

30

40
L

os
s

R
at

e
(%

)
1 ms/packet
2 ms/packet
4 ms/packet
16 ms/packet
512 ms/packet

Figure 1: This graph plots the Internet packet drop rate,

for packets sent from Dartmouth College to a Stanford

University echo server and back, as a function of time of

day. Each curve corresponds to a di�erent transmission

rate. Packets contained roughly 550 bytes each. 2ms per

packet was an e�ective transmission rate between 03:00

and 04:00 EDT, but generates high loss rates when the

net becomes busy during the day. During the day, the

loss rate never drops much below 5% no matter how

slowly data is transmitted.

losses at around 750 ms because the TCP RENO over-

shoots the channel's actual throughput by a factor of

two at the end of slow-startup.

For the network experiment in this paper, we used

an o�ine process to choose a fair transmission rate for

FLIIT packets. This rate was chosen by picking the knee

on the load/loss curve [18]. Streams of packets contain-

ing roughly 550 bytes were sent at various transmission

rates, and the loss rate was measured for each rate. As

can be seen in Figure 1, the loss rate as a function of

transmission rate was roughly constant at rates below

about 4ms per packet. Above 4ms per packet, the loss

rate increased sharply. We chose to run our experiments

using a transmission rate of 4ms per packet to avoid high

loss rates, and to avoid impacting other applications.

In future work, we plan to incorporate an automatic

Vegas-like rate control strategy into our image server.

The main di�erence in rate control from TCP-Vegas

would be that rate control information would be re-

tained for each network address between image trans-

missions. This would eliminate startup e�ects from im-

age transmission, except for the �rst image sent to a

given site.

4.4 Stopping Criterion

FLIIT packets may be lost or delayed for long periods

of time. If we wait too long for slow packets, we lose

responsiveness. If we don't wait long enough, we lose

packets. This tradeo� between transmission speed and

packet loss has an elegant resolution: we can incorporate

the tradeo� into our resource allocation algorithm and

choose an optimal stopping point.

The server sends packets at a constant rate, which we

assume to have been chosen in some pro-social manner

conducive to keeping congestion down. If we send a

packet every b time units, where b is chosen to be less

than or equal to the throughput of the network, and the

network delivers all packets after a �xed delay, then the

n-th packet will arrive at time Tn = a + (n � 1)b. Here

a is the arrival time of the �rst packet. On the Internet,

packets are delayed by variable lengths of time. We can

incorporate this variability into our arrival time model

by adding a random delay variable Xn. Now we have

Tn = a+ b(n� 1) +Xn. Our goal is to �nd a stopping

time Tstop after which we stop waiting for packets and

reconstruct our image.

Packets arriving after time Tstop will be considered

lost. Given the distributions of the Xn, we can de-

termine P (Tn > Tstop), the probability that packet n

will be lost due to excessive delay. We have random-

ized the order of the packets we transmit, so the prob-

ability of any given packet being the n-th packet trans-

mitted is 1

N
, where N is the total number of packets

sent. The probability of a particular packet being lost

due to delay is pdelay(Tstop) =
1

N

PN

k=1P (Tn > Tstop).

The overall probability that a packet is lost, then, is

ploss = 1 � (1 � pdrop)(1 � pdelay) where pdrop is the

probability of the packet being dropped in transit.

We see that our choice of stopping time thus a�ects

the loss rate observed by the receiver. The reconstructed

image distortion is a function, then, not only of the num-

ber of data and redundancy bits, but also of the stopping

time. Because our constraint is on the number of bits

sent, and not on the length of time required to receive

the image, the optimal value of Tstop is in�nite. If our

goal is to maximize responsiveness, we need to constrain

the time required to receive the image rather than the

total number of bits we send. We can do this by setting

our cost function to be the sum of the time required to

send the bits in the image plus the time spent waiting.

The result is that we obtain a new set of cost and dis-

tortion functions which depend on the bit allocations

as well as the stopping time. By varying the stop time

in our allocation algorithm, we can obtain jointly opti-

mized bit allocations and a stopping time.

In our experiments we model the delays Xn as a set

of independent, identically distributed Poisson random

variables with parameter �. Figure 2 shows that the

-4 -2 0 2 4

normalized delay

0.0

0.2

0.4

0.6

0.8

1.0
P

(n
or

m
al

iz
ed

 d
el

ay
 <

=
k)

Packet Delay Cumulative Density Function

Figure 2: Observed and �tted cumulative density func-

tions for the packet delays Xn. The data was gathered

from ten 160-packet transmissions. O�sets and send-

ing rates a and b were determined by least squares so

that the delay Xn could be isolated. The resulting de-

lay was normalized to have mean 0 and variance 1. The

superimposed solid curve is the cdf for an equivalently

normalized Poisson random variable.

model does a good job of describing the distribution

of delays. Although the assumption of independence is

certainly too strong, it does not appear to a�ect our re-

sults signi�cantly. The o�set a and sending rate b can

be determined by the receiver via least squares and the

parameter � via the method of moments. The server can

update its knowledge of network conditions by periodi-

cally obtaining these quantities from the receiver. In our

experiments, we found typical stopping times to be the

expected time of arrival of the last packet, a+b(N�1)+�
plus a delay ranging from 0 to

p
�, the standard devia-

tion of the delay.

5 EXPERIMENTS

We present two experiments. In the �rst, we compare

uniform vs. non-uniform distribution of redundancy in

forward error correction with simulated network losses.

In the second experiment we compare image quality as a

function of transmission time for FLIIT and TCP, using

a real network.

5.1 Uniform vs. Non-uniform Forward Error Correc-

tion

5.1.1 Experiment

Using the well known Lena image at 256 � 256 resolu-

tion, we generated sets of packets using the FLIIT al-

gorithm, as well as three di�erent �xed-parity schemes.

The �xed-parity schemes used the same bit allocator as

0.0 0.2 0.4

Loss Rate

10

20

30

40

P
SN

R

Ratio = 8:1

fixed parity 3
fixed parity 0
fixed parity 1/3
FLIIT
FLIIT expected

Figure 3: The expected and measured performance of

FLIIT, and 3 �xed parity schemes. Fixed parity 3 means

that data blocks are always replicated 3 times. Fixed

parity 0 means there was no redundancy. Fixed parity

1/3 means that there is one parity block for every 3 data

blocks. The Y axis is the peak signal to noise ration

(PSNR), a logarithmic indicator of image quality, and

the X axis is the expected loss rate. FLIIT dominates

the other schemes, usually by several dB.

FLIIT in order to determine quantizer resolutions for

each subband, but no adaptive coding was done for the

parity bits. Our experiments will therefore show only

the e�ects of adaptive versus �xed distribution of re-

dundancy. In one �xed scheme each data block was

replicated 3 times (�xed parity 3), in another scheme

groups of three data blocks were protected by a single

parity block (�xed parity 1

3
), and in the last scheme no

parity blocks were used (�xed parity 0).

Packets were generated using each scheme using 8:1

compression, and with expected loss rates ranging from

0% to 50%. For each combination of parity scheme,

compression ratio, and loss rate we ran simulated trans-

mission experiments in which packets were deleted

by subjecting each packet to an independent pseudo-

random Bernoulli trial. Images were then reconstructed

from the remaining packets, allowing image comparisons

and calculations of actual image distortions.

5.1.2 Results

Figure 3 displays the results of our experiments. As

can be seen, the FLIIT scheme has the overall best per-

formance for all loss rates tested.

The �xed parity 3 scheme (each block is assigned 3

copies) performs best for high loss rates because of the

large amounts of transmitted redundancy. At high loss

rates, FLIIT also uses large amounts of redundancy,

but it distributes these redundancy bits more selectively

Figure 4: We ran 400 experiments at 8:1 compression with expected 50% packet loss. From the left, the images

represent the 90th percentile, 50th percentile and 10th percentiles of reconstructed image quality. This is a very

severe test: images are reduced to roughly 9Kbytes (18-20 packets with overhead) and then packets are randomly

eliminated in independent trials, so that often well under 50% of the packets survive.

than the �xed scheme. In particular, FLIIT shields the

low-frequency portions of the image especially heavily,

since for the Lena image (and in general) the loss of a

low frequency data block results in a much larger er-

ror than the loss of a high frequency block. The extra

shielding is inexpensive, since there are relatively few

low frequency coe�cients.

Figure 4 shows the e�ects of compression and trans-

mission losses on the 256�256 Lena image under FLIIT.

and the �xed parity 3 scheme. These images have been

compressed from 64K to 9.5K (8:1 compression plus a

roughly 20% packet header overhead cost), including the

parity blocks, and all packets have a 50% probability

of being lost. In e�ect, these images have been recon-

structed from 4K of randomly selected data.

These data show that FLIIT performs well even at

very high error rates.

5.2 FLIIT vs. TCP

5.2.1 Experiment

In this experiment, we measured image quality (PSNR)

as a function of transmission time for both FLIIT and

TCP. The clock starts when a client requests an image,

and ends when the client decides that it has received

an image. We did not include decode time which is the

same for both clients, and nearly negligible in any case.

For FLIIT transport, the client makes its request with a

single UDP packet. For TCP transport, the client makes

its request over a TCP connection. FLIIT images are

returned using UDP. TCP images are returned using

TCP.

The TCP images were generated using the same com-

pression routines as the FLIIT images, but there was

no redundancy or blocking, eliminating all of the over-

head which FLIIT needs for reconstruction after lossy

transmission, but which are unnecessary after lossless

transmission.

As discussed above in Section 4.4, the FLIIT client

calculates a running estimate of the expected time of

arrival of the last packet. The client waits some period

beyond this time, typically one standard deviation of the

interpacket arrival time, and decodes the image. The

exact amount of extra time to wait is calculated and

speci�ed by the FLIIT server.

The TCP client stops when the complete image has

arrived.

We used a real Internet connection for this experi-

ment. The connection was between Dartmouth College

in Hanover New Hampshire, and Stanford University in

Stanford California. The participating computers were

separated by 20 hops. For convenience, we ran the client

and the server locally, but sent the data across the conti-

nent, by routing network packets from our local client to

a local pseudo server, which bounced these packets o� of

the Stanford machine's echo server, and forwarding the

returning packets to our local server. Tra�c from the

server to the client was also similarly redirected through

the remote echo server. Figure 5 illustrates this setup.

The image used was again, Lena at 256 � 256 reso-

lution. We transmitted Lena at di�erent compression

ratios, 160 times for each sample.

We ran the experiment under two di�erent sets of

circumstances: daytime and nighttime, both on week-

days. Daytime was 12:00-18:00EDT. Nighttime was

02:00-08:00EDT.

We set the expected loss rate, expected packet ar-

rival rate, and standard deviation of interpacket delay

to 1.3%, 4.4ms per packet, and 10.4ms for the night

Remote

ForwardingFLIIT

Client

FLIIT

Server

Echo Server

Server

Figure 5: Packets (FLIIT) or stream data (TCP) origi-

nating from a local client at Dartmouth College is for-

warded through an echo server at Stanford University,

and then to the local server. Transmissions from the

server to the client are forwarded similarly.

experiments, and 8.2%, 4.6ms per packet, and 12.3ms

during the day.

5.2.2 Results

The results of this experiment are graphed in Figure 6.

FLIIT uniformly outperformed TCP for equivalent im-

age quality. Tiny FLIIT images were transmitted over

twice as fast as their TCP counterparts, presumably

because fewer round trips are necessary to establish

a FLIIT connection. Larger images were transmit-

ted more quickly because FLIIT does not retransmit

dropped packets, slow down when packets are dropped,

or wait multiple round trip times for the last few pack-

ets. During the day, when the Internet is congested,

FLIIT is more than �ve times faster than TCP, even for

high quality images.

FLIIT accepts some variance in quality for a tremen-

dous improvement in performance and almost complete

elimination of the multisecond variance in time accepted

by TCP. TCP makes the right tradeo� for applications

requiring perfect transmission. FLIIT makes the right

tradeo� for interactive and real-time applications.

6 COMPUTATIONAL COMPLEXITY

FLIIT encoding and decoding both run in linear time

in the size of the input image. Encoding requires gen-

erating a constant size set of bit-rate/distortion pairs,

which is relatively expensive. Decoding requires only

a wavelet transform which is cheap. In practice, the

256x256 image used in our experiments was encoded in

2.0 seconds, and decoded in 0.4 seconds on a DEC AL-

PHA 3000. These delays, especially the decoding time,

are small compared to the extra delays experienced by

TCP transmitted images, and TCP transmitted images

need decompression too.

There are a number of performance optimizations re-

maining which we have not pursued at this point: a

0 2 4 6 8 10 12

Transmission Time (sec)

25

30

35

40

45

P
SN

R

FLIIT/day
FLIIT/night
TCP/day
TCP/night

Figure 6: This graph plots image quality (Peak Sig-

nal to Noise Ratio, a logarithmic function of the mean

squared error), as a function of transmission time. Plot-

ted points correspond to median values, while error bars

indicate �rst and third quartiles. TCP curves have er-

ror bars only in the time dimension because they de-

liver consistent quality. FLIIT has error bars in both

dimensions because both quality and time are variable.

For equivalent quality, FLIIT is roughly twice as fast as

TCP at night, and �ve times faster than TCP during

the day. FLIIT has almost no variation in transmis-

sion time, while TCP transmission times vary widely,

especially during the day.

DCT could be substituted for the wavelet transform. A

faster modi�ed Hu�man coder similar to JPEG's could

be substituted for our arithmetic coder. Matrices of en-

coding parameters coupld be computed o�ine, allowing

online encoding to run as fast as decoding. We are con-

�dant that FLIIT is, or can be made to be, appropriate

for CPU performance limited applications.

7 DISCUSSION

We have demonstrated a technique which combines

source and channel coding, as well as an appreciation

of Internet characteristics, producing an image transfer

protocol which transfers images of a given quality twice

as fast as the TCP protocol at night, and �ve times

faster than TCP during the day.

The FLIIT technique is appropriate for image pre-

viewing, progressive image transmission, transmission of

moving pictures, and broadcast applications, although

some work would be necessary to e�ciently integrate

FLIIT into a moving picture broadcast system such as

MPEG.

One current concern is that FLIIT may be achiev-

ing some of its stellar daytime performance by being

more aggressive than TCP connections. In our exper-

iments, FLIIT didn't increase the packet loss rate on

the network, but it did not slow down when packets

were dropped, while TCP connections did. On the other

hand, TCP (RENO) connections force dropped packets

at the end of slow every second or so when they over-

shoot the available bandwidth, so it isn't clear who is

being a worse network citizen. The current implemen-

tation of FLIIT should coexist gracefully with TCP Ve-

gas implementations, because neither protocol will force

dropped packets.

8 FUTURE WORK

As we mentioned above, we plan to implement an au-

tomatic rate control procedure similar to TCP Vegas's

in the near future. Our procedure would di�er from the

Vegas's in that we would retain throughput estimates for

network destinations between connections, mostly elim-

inating slow startup. Vegas, and all other TCP imple-

mentations we are aware of, derive network throughput

information for each connection from scratch, forfeiting

reasonable performance for short sessions. We believe

that the retention of network throughput information

between TCP connections would improve the perfor-

mance of the very short sessions typically generated by

World Wide Web clients.

We are currently implementing a FLIIT image server

and a client that can be invoked by a generic web viewer

so that WWW users can use FLIIT to access images

stored in our server.

We are also interested in better measures of percep-

tual error, continuous lossy transmission, and improved

channel coding techniques.

9 ACKNOWLEDGMENTS

Thanks to Qin Zhang for speeding up the wavelet trans-

form, Sumit Chawla for helping with wavelet kernels,

and Pat Hanrahan for letting us bounce packets o� his

computer. Thanks also for the reviewers for making us

do better work.

References

[1] A. Albanese, J. Bloemer, J. Edmonds, M. Luby,

and M. Sudan, \Priority encoding transmission",

Proc. 35th Annual Symposium on Foundations of

Computer Sciences, Santa Fe, NM, pp. 604-612,

1994.

[2] T.C. Bell, J.G. Cleary, and I.H. Witten, \Text

Compression," Prentice Hall, Englewood Cli�s, NJ,

1990

[3] E.W. Biersack, \Performance evalutaion of forward

error correction in ATM networks," Proceedings of

the SIGCOMM 92 Symposium, Baltimore, 248-257,

1992 .

[4] L. S. Brakmo, S. W. O'Malley, and L. L. Peterson.

\TCP Vegas: New techniques for congestion detec-

tion and avoidance." Proceedings of the SIGCOMM

'94 Symposium, Aug. 1994.

[5] T.M. Cover and J.A. Thomas, Elements of Infor-

mation Theory, John Wiley & Sons, Inc., New

York, 1991.

[6] M. W. Garrett and M. Vetterli, \Joint

source/channel coding of statisticallyl multi-

plexed real-time services on packet networks,"

IEEE Transactions on Networking, 1:1, 71-80, Feb

1993.

[7] Georgia Tech Graphics, Visualization, & Usabil-

ity Center, \Third degree polynomial curve �t-

ting for bytes transferred per month by ser-

vice," NSFNET Backbone Statistics Page, August

1995, http://www.cc.gatech.edu/gvu/stats/NSF/-

merit.html.

[8] G. Karlsson, and M. Vetterli, \Subband coding of

video for packet networks," Optical Engineering,

27(7), 574-586 1988

[9] C. Leicher, \Hierarchical encoding of MPEG

sequences using priority encoding transmission

(PET)," TR-94-058, ICSI, Berkeley, CA, Nov.

1994.

[10] A. S. Lewis and G. Knowles, \Image compression

using the 2-D wavelet transform," IEEE Transac-

tions on Image Processing, Vol. 1, No. 2, pp. 244-

250, April 1992.

[11] E.J. Posnak, S.P. Gallindo, A.P. Stephens, and

H.M. Vin, \Techniques for resilient transmission of

JPEG video streams," preprint.

[12] J. Shapiro, \Embedded Image Coding Using Ze-

rotrees of Wavelet Coe�cients," IEEE Transac-

tions on Signal Processing, Vol. 41, No. 12, pp.

3445-3462.

[13] Y. Shoham and A. Gersho, \E�cient bit allocation

for an arbitrary set of quantizers," IEEE Trans.

Acoustics, Speech, and Sig. Proc., 36:9, 1445-1453,

1988.

[14] N. Tanabe and N. Farvardin, \Subband image cod-

ing using entropy-coded quantization over noisy

channels," IEEE Journal on Selected Areas in

Communications, 10:5, 926-943, 1992.

[15] A. Tanenbaum, \Computer Networks," Prentice-

Hall, Englewood Cli�s, N. J. 1981.

[16] Turner, Charles J., and Larry L. Peterson, \Im-

age transfer: and end-to-end design," SigComm 92,

258-268.

[17] J.D. Villasenor, B. Belzer, J. Liao, \Wavelet �l-

ter evalution for image compression," IEEE Trans.

Image Processing, Aug. 1995.

[18] C.L. Williamson and D. R. Cheriton, \Loss-load

curves: Support for rate-based congestion control

in high-speed datagram networks," Proceedings of

SIGCOMM 91, pp. 17-28, 1991.

[19] I. Witten, R. Neal, and J. Cleary, \Arithmetic cod-

ing for data compression," Communications of the

ACM, 30:6, 520-540, 1987.

