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Abstract

The problem of optimally approximating a function with a linear expansion over a redun-

dant dictionary of waveforms is NP-hard. The greedy matching pursuit algorithm and

its orthogonalized variant produce sub-optimal function expansions by iteratively choosing

the dictionary waveforms which best match the function's structures. Matching pursuits

provide a means of quickly computing compact, adaptive function approximations.

Numerical experiments show that the approximation errors from matching pursuits

initially decrease rapidly, but the asymptotic decay rate of the errors is slow. We explain

this behavior by showing that matching pursuits are chaotic, ergodic maps. The statistical

properties of the approximation errors of a pursuit can be obtained from the invariant

measure of the pursuit. We characterize these measures using group symmetries of dictio-

naries and using a stochastic di�erential equation model. These invariant measures de�ne

a noise with respect to a given dictionary. The dictionary elements selected during the

initial iterations of a pursuit correspond to a function's coherent structures. The expansion

of a function into its coherent structures provides a compact approximation with a suitable

dictionary. We demonstrate a denoising algorithm based on coherent function expansions.

We also introduce an algorithm for adapting a dictionary for e�ciently decomposing a

given class of functions.
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Chapter 1

Introduction

1.1 Redundant Representations

The focus of this work is the problem of obtaining e�cient representations of functions.

Speci�cally, we seek to approximate functions with linear combinations of a small number

of unit vectors from a family fgg2� in a Hilbert space H. For any M > 0, we want to

minimize the error

�(M) = kf �
X
2IM

�gk

where IM � � is an index set of cardinality M . Representations of this form are of central

importance in numerous applications. Image compression requires e�cient storage of func-

tions f(x; y) on the plane. If we can accurately approximate f with a linear combination

of a small number of the vectors g , then we need only store a small number of coe�cients

� and indices . For numerical methods, such representations can reduce lengthy compu-

tations on f to a small number of computations performed on each g in the expansion of

f , enabling fast calculation. In pattern recognition applications, the g in the expansion

of f are interpreted as features of f . Compact expansions highlight the dominant features

of f and allow f to be characterized by a few salient characteristics.

When fgg2� is an orthonormal basis we can minimize the approximation error �(M)

by taking IM to be the vectors corresponding to the largest M inner products (j< f; g >

j)2�, since
�(M) =

X
2��IM

j < g ; f > j2:

For the case that H is a space of �nite dimension N and the set � contains a �nite number

P orthogonal vectors, the expansion which minimizes �(M) is not di�cult to compute and

requires O(PN) work.

Depending upon the basis and the space H, it is possible to estimate the decay rate

of the minimal approximation error �0(M) = infIM �(M) as M increases. For example, if

fgg2� is a wavelet basis, the rate of decay of �0(M) can be estimated for functions that

1



CHAPTER 1. INTRODUCTION 2

belong to any particular Besov space. Conversely, the rate of decay of �0(M) characterizes

the Besov space to which f belongs[15].

We can greatly improve these linear approximations to f by enlarging the collection

fgg2� beyond a basis. This enlarged, redundant family of vectors we call a dictionary.

The advantage of redundancy in obtaining compact representations can be seen by consid-

ering the problem of representing a two-dimensional surface given by f(x; y) on a subset of

the plane, I� I , where I is the interval [0; 1]. An adaptive square mesh representation of f

in the Besov space B�

q
(Lq(I)), where 1

q
= �+1

2 , can be obtained using a wavelet basis. This

wavelet representation can be shown to be asymptotically near optimal in the sense that

the decay rate of the error �(M) is equal to the fastest decay attainable by a general class

of non-linear transform-based approximation schemes [16][17]. Even these near-optimal

representations are constrained by the fact that the decompositions are over a basis. The

regular grid structure of the wavelet basis prevents the compact representation of many

functions. For example, when f is equal to a basis wavelet at the largest scale, it can be

represented exactly by a expansion consisting of a single element. However, if we translate

this f slightly, then an accurate approximation can require many elements. One way to

improve matters is to add to the set fgg2�, for example, the collection of all translates

of the wavelets. The class of functions which can be compactly represented will then be

translation invariant. We can do even better by expanding the dictionary to contain the

extremely redundant set of all piecewise polynomial functions on arbitrary triangles.

Communicating in a natural language is another example of the use of compact repre-

sentations in overcomplete sets. The English language is highly redundant as the heft of

any thesaurus will show. Careful selection of words, however, allows precise, richly detailed

information to be conveyed succinctly{consider a well-crafted haiku, for example.

Intriguing research in neurophysiology suggeststhat compact representations over a

highly redundant set have a deep biological analog that is an integral component of human

cognition. Information from the retina is thought to pass through a hierarchy of feature

detectors in the cortex, each layer of which corresponds to a larger and more complex set

of features from which fewer and fewer features are identi�ed. The activity of cells in the

retina corresponds roughly to the brightness and frequency of light at a particular location

on the retina. At the next level, di�erent ganglion cells are tuned to respond to particular

local orientations of edges, local movement at a particular rate, and so on. It is postulated

that the end result of this process is a characterization of the sensory information by as few

active neurons as possible, perhaps as few as the 1,000 words which describe a picture[3]

[4].

1.2 Practical Considerations

The �rst issue we must resolve is how to �nd compact expansions for a given function f .

We require that �nite linear combinations of dictionary vectors fgg2� be dense in the

space H. Hence, it is always possible to obtain a linear expansion of any f 2 H. When
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there exist constants A;B > 0 such that for all f 2 H

Akfk2 �
X
2�

j< f; g > j � Bkfk2 (1:1)

the collection fgg is called a frame. Frames were �rst introduced 40 years ago in [19] for

use with nonharmonic Fourier series. They have received much attention in recent years

as a tool for analyzing discrete wavelet transforms [13] [57]. The frame condition (1.1)

implies that the linear operator T : H ! H de�ned by

Tf =
X
2�

< f; g > g (1:2)

is invertible. The inverse of T gives rise to a dual frame f~gg2� = fT�1gg2�, from
which we obtain an explicit expansion formula for f ,

f =
X
2�

< f; ~g > g : (1:3)

For any other expansion
P
�g = f , the sum of the coe�cients

P
j� j2 >

P
j< f; ~g > j2.

These frame reconstructions utilize all g 's in the dictionary, however, and hence do not

in general provide the compact representations we seek.

In chapter 2 we study the complexity of �nding optimal M vector approximations to

a function f , expansions of f which have minimal approximation error �(M). We prove

that in spaces of �nite dimension N the problem of �nding expansions in �1N � M �
�2N vectors from a redundant dictionary that minimize the error �(M) is in general a

fundamentally intractable problem{in fact, it is NP-hard.

Because of the di�culty of �nding optimal approximations, two alternative expansion-

�nding strategies have emerged. The �rst is to use exhaustive search methods to �nd an

exact solution to a sharply restricted and much easier problem, an approach taken by vector

quantization and the best-basis algorithm. The second method is to use an iterative greedy

algorithm to approximate optimal solutions of the general problem, a strategy employed

by matching pursuit algorithms and their variants.

1.3 Constrained Expansions{Vector Quantization and Best-

Basis

Vector quantization was introduced by Shannon in the 1940's as a device for obtaining

information theoretical bounds [52]. In the last decade the advent of high speed computing

has brought these techniques into wide use for data compression [26]. Shape-gain vector

quantization [6] [50] is a type of quantization designed to approximate patterns in vectors

which occur over a range of di�erent gain values. In our framework, shape-gain vector

quantization is equivalent to approximating a function f with the single term sum �g .
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The vector g is chosen from a large, highly redundant collection of unit vectors called a

codebook. Because of the extremely small size of the expansions, quantization algorithms

employ the brute force method of trying expansions using all vectors in the codebook to

�nd the optimal one. The optimal expansion is given by < f; g > g where g is the

vector which maximizes j< f; g > j; the magnitude of the relative error is

�(1)

kfk2
= 1�

j< f; g > j2

kfk2
: (1:4)

To ensure a small error the g 's must form a very dense set on the surface of the unit

sphere. The small number of terms in the expansions therefore places a sharp limit on

the dimension of the space from which functions can be approximated with any degree of

accuracy, since the size of the codebooks needed to cover the sphere with a given density

increases exponentially with the dimension of the space. To expand large dimensional

signals, such as digital audio recordings or images, the signals are �rst segmented into low-

dimensional components, and these components are then quantized. This segmentation of

the signal is equivalent to a restricting the dictionary to a collection of mutually orthogonal

blocks of vectors. With such a dictionary, the expansions can only represent e�ciently those

structures that are limited to a single low-dimensional partition. Structures that extend

across the partitions require many dictionary vectors for accurate representation.

The best-basis algorithm of Coifman and Wickerhauser [9] performs function expan-

sions over orthogonal bases from a carefully constructed dictionary. For an N dimensional

space, the best basis dictionary contains N log2N functions of the form

g(t) = 2
j

2wn(2
j
t� k); n 2 N; j; k 2 Z (1:5)

called wavelet packets. The parameters k and j are translation and scaling parameters,

and n corresponds roughly to a modulation. This set of wavelet packets contains over 2N

di�erent orthonormal bases of H, including orthonormal wavelet bases and an orthogo-

nalized analog of the window Fourier transform. The structure of the dictionary can be

utilized to allow decompositions of functions to be computed in O(N logN) time. This

fast performance is a result of the particular structure of the wavelet packet dictionary,

however, and the algorithm does not generalize to other dictionaries. Hence, the type of

expansions that can be performed is restricted. Another limitation of the algorithm is that

the expansions are constrained to orthonormal bases. This restriction can preclude more

e�cient expansions. The presence of strong transients within a signal, for example, can

mask the presence of nearby portions of the signal with di�erent time-frequency behaviors

by causing the algorithm to choose a local basis that is well-suited to decomposing only

the transients.

1.4 General Expansions with Greedy Algorithms

A class of iterative algorithms for performing expansions over redundant dictionaries, called

matching pursuits, have been independently developed in signal processing [58], statistics



CHAPTER 1. INTRODUCTION 5

[32][20][30], and control theory applications [7][5]. An excellent overview is provided in [58].

Matching pursuits are greedy algorithms; rather than �nding a globally optimal expansion

(which we show is an NP-hard problem), at each step of operation they �nd an optimal

one-element expansion. The residual of this one element expansion is then expanded in

the next iteration, and so on. We review a fast, parallelizable version of matching pursuit

algorithm due to [58] in chapter 3.

Because the pursuit is a multi-stage process, the dictionaries used for the expansions

do not need to be as enormous as those used for single stage vector quantization. Matching

pursuits are therefore capable of decomposing functions in very high dimensional spaces

without requiring enormous computational resources or partitioning into orthogonal sub-

spaces. Moreover, because high dimensional spaces do not need to be partitioned, the

dictionaries can include structures which are much more delocalized than can single stage

vector quantization codebooks.

Unlike the best-basis algorithm, matching pursuits can use arbitrary dictionaries. In

section 3.3 we describe an application of matching pursuits for performing adaptive time-

frequency decompositions of signals. For this application we use as a dictionary a family of

vectors which are optimally localized in the time-frequency plane, a collection of translated,

modulated, and scaled Gaussians. Wavelet packets have poor frequency localization [42]

and are thus much less e�cient for performing this task. The constraint that the best-basis

decomposition be an orthogonal basis is an additional hindrance to performance when sig-

nals are non-stationary. The basis constraint imposes a structure on the decomposition

which can prevent adaptation to local signal structures when strong features of very di�er-

ent time-frequency localization are nearby. The greedy expansions of matching pursuits,

in contrast, are locally adapted to the time-frequency localization of signal structures.

The question now arises of what we sacri�ce in using these non-optimal greedy expan-

sions. For dictionaries consisting of an orthonormal basis, the matching pursuit expansion

for a function f is precisely the optimal expansion obtained above by using the M dictio-

nary elements with the largest inner products j< f; g > j. For more general dictionaries

the matching pursuit expansions are not optimal. In fact, when no two elements of a

dictionary for a �nite dimensional space are orthogonal, matching pursuit expansions are

not only non-optimal, they do not converge in a �nite number of iterations except on a

set of measure 0. We introduce an orthogonal matching pursuit which converges in �nite

steps in �nite dimensional spaces, and we compare the performance and complexity of the

non-orthogonal and orthogonal pursuit.

We examine the asymptotic behavior of matching pursuits in order to better understand

their convergence properties. We prove that matching pursuits possess chaotic properties

and that for a class of dictionaries with a group invariance the asymptotic approximation

errors can be viewed as the realizations of a stationary white process called dictionary

noise. The asymptotic convergence of the pursuit can be quite slow, but our numerical

experiments show that given a suitable dictionary, function expansions initially converge

very quickly. Thus, when the number of terms in the expansion is not too large, matching

pursuits provide e�cient approximations.
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1.5 Dictionaries

An additional issue we must resolve is how to determine an appropriate dictionary over

which to perform the expansions. Even an optimal expansion will not provide compact

function representations if an unsuitable dictionary is used. For example, a discrete Fourier

basis is a poor choice for expanding functions containing discontinuities. Similarly, we

would not want to use a Haar wavelet basis for approximating smooth functions.

The problem of �nding an appropriate dictionary is essentially one of �nding a set of

canonical features which characterize the functions we wish to decompose. Experiments

show that animals reared in environments lacking certain types of visual stimuli have few if

any neurons that respond to the missing features when they are presented later in life. This

shows that the \dictionary" of features used by the cortex to encode visual sensory data

is at least partially learned. We develop an algorithm which, like the cortex, iteratively

adapts a dictionary to provide e�cient representations for a training set of data.[3]

We examine the speci�c problem of optimizing a dictionary for approximating the

realizations of a given random process. Many types of physical data can be viewed as

such realizations. An important class of dictionaries we study are those which possess

a group structure, such as translation or modulation invariance. Such dictionaries are

a priori well-suited to decomposing realizations of a process which possesses similar in-

variances. Apart from establishing such macroscopic properties as translation invariance,

the problem of �nding an optimal dictionary is a di�cult one. Dictionary optimization

has been well-studied in the context of vector quantization, i.e. in the case of expansions

consisting of a single vector. The generalized Lloyd algorithm [34] is a standard method

for optimizing dictionaries for vector quantization. We present a modi�ed version of the

Lloyd algorithm to iteratively optimize a dictionary for approximating the realizations of

a particular random process.

1.6 Outline of Thesis

In this thesis we address three central issues for performing function expansions over re-

dundant dictionaries.

1. How can we e�ciently obtain expansions over redundant dictionaries which minimize

the approximation error �(M), and what is the computational complexity of obtaining

such expansions?

2. For what types of functions can we obtain compact representations with a given dic-

tionary, and how can we characterize the approximation errors from such a scheme?

3. How can we �nd a dictionary which is optimal for a given class of functions?

In chapter 2 we prove that the problem of �nding optimal function expansions over a

redundant dictionary is NP-hard. We show that the minimal approximation error criterion
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leads to intrinsically unstable expansions which accounts for some of the di�culty in �nding

these expansions.

As a result of these complexity results, we turn to sub-optimal methods for �nding ex-

pansions. In chapter 3 we review the matching pursuit algorithm of [39], and in chapter 4.1

we introduce an orthogonalized version of the algorithm which has improved convergence

properties. We compare the complexity and performance of these two algorithms for a set

of speech data with a dictionary of time-frequency atoms.

In chapters 6 and 7 we study the asymptotic behavior of the residuals from a matching

pursuit. In our numerical experiments we �nd that the rate of decay of the approximation

error �(M) decreases as M becomes large. These observations are explained by showing

that a matching pursuit is a chaotic map which has an ergodic invariant measure. The

proof of chaos is given for a particular dictionary in a low-dimensional space, and we show

numerical results which indicate that higher dimensional matching pursuits are also ergodic

maps. WhenM is small, the matching pursuit provides an e�cient function expansion into

what we call \coherent" structures. The error incurred by truncating function expansions

when the convergence rate �(M) becomes small corresponds to the realization of a process

which is characterized by the invariant measure called \dictionary noise." The properties

of invariant measures are studied for the particular case of dictionaries that are invariant

under the action of a group of operators, and a stochastic model of the evolution of the

residues is developed for a dictionary which is composed of a discrete Dirac basis and

discrete Fourier basis.

Finally, in chapter 8 we address the problem of adapting a dictionary for decomposing

realizations of a particular random process. We use a modi�ed version of the Lloyd algo-

rithm of vector quantization to develop an algorithm for iteratively optimizing a dictionary

for matching pursuit and orthogonal matching pursuit expansions.



Chapter 2

Complexity of Optimal

Approximation

Let H be a Hilbert space. A dictionary for H is a family D = fgg2� of unit vectors

in H such that �nite linear combinations of the g are dense in D. The smallest possible

dictionary is a basis of H; general dictionaries are redundant families of vectors. Vectors

in H do not have unique representations as linear sums of redundant dictionary elements.

We prove below that for a redundant dictionary we must pay a high computational price

to �nd an expansion with M dictionary vectors that yields the minimum approximation

error.

De�nition 2.1 Let D be a dictionary of functions in an N -dimensional Hilbert space H.

Let � > 0 and M 2 N. For a given f 2 RN an (�;M)-approximation is an expansion

~
f =

MX
i=1

�igi
; (2:1)

where �i 2 C and gi 2 D, for which

k ~f � fk < �:

An M-optimal approximation is an expansion that minimizes k ~f � fk.

If our dictionary consists of an orthogonal basis, we can obtain an M-optimal approxi-

mation for any f 2 H by computing the inner products f< f; g >g2�; and sorting the dic-
tionary elements so that j< f; gi

> j � j< f; gi+1
> j. The signal ~

f =
P

M

i=1 < f; gi
> gi

is then an M-optimal approximation to f . In an N dimensional space, computing the

inner products requires O(N2) operations and sorting O(N logN) so the overall algorithm

is O(N2).

For general redundant dictionaries, the following theorem proves that �nding M-optimal

approximations is computationally intractible.

8
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Theorem 2.1 Let H be an N dimensional Hilbert space. Let k � 1 and let DN be the set

of all dictionaries for H that contain O(Nk) vectors. Let 0 < �1 < �2 < 1 and M 2 N

such that �1N �M � �2N . The (�, M)-approximation problem, determining for any

given � > 0;D 2 DN , and f 2 H, whether an (�, M)-approximation exists, is NP-complete.

TheM-optimal approximation problem, �nding the optimal M-approximation, is NP-

hard.

The theorem does not imply that the M -approximation problem is intractible for spe-

ci�c dictionaries D 2 DN . Indeed, we saw above that for orthonormal dictionaries, the

problem can be solved in polynomial time. Rather, we mean that if we have an algorithm

which �nds the optimal approximation to any given f 2 RN for any dictionary D 2 DN ,

the algorithm decides an NP-hard problem.

Note: in our computations we restrict f , the elements of the dictionaries, and their

coe�cients to oating point representations of �(Nm) bits for some �xed m [53]. This

restriction does not substantially a�ect the proof of NP-completeness, because the problems

that must be solved for the proof are discrete and una�ected by small perturbations.

Proof: For any � we can solve the (�;M)-approximation problem by �rst solving the

M-optimal approximation problem, computing �min = k ~f �fk, and then checking whether

�min < �. Hence the M-optimal approximation problem must be at least as hard as

the (�;M)-approximation problem. Proving that the (�;M)-approximation problem is

NP-complete thus implies that the M -optimal approximation problem is NP-hard. The

(�;M)-approximation problem is in NP, because we can verify in polynomial time that

k ~f�fk < � once we are given the set ofM elements and their coe�cients. To prove that it

is NP-complete we prove that it is as hard as the exact cover by 3-sets problem, a problem

which is known to be NP-complete.

De�nition 2.2 Let X be a set containing N = 3M elements, and let C be a collection

of 3-element subsets of X. The exact cover by 3-sets problem is to decide whether C
contains an exact cover for X, i.e. to determine whether C contain a subcollection C 0 such
that every member of X occurs in exactly one member of C0? [23]

Lemma 2.1 We can transform in polynomial time any instance (X; C) of the exact cover

by 3-sets problem of size jX j = 3M into an equivalent instance of the (�;M)-approximation

problem with a dictionary of size O(N3) in an N -dimensional Hilbert space.

This lemma implies that if we can solve the (�;M)-approximation problem for M =

N=3, we can also solve an NP-complete problem so the approximation problem must be

NP-complete as well. It thus gives a proof of the theorem for M = N

3 .

Proof: Let H be an N dimensional space with an orthonormal basis feig1�i�N . For

notational convenience we suppose that X is the set of N = 3M integers between 1 and

N . Let C be a collection of 3-element subsets of X . To any subset of K integers S � X
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we associate a unit vector in H de�ned by

T (S) =
X
i2S

eip
K

: (2:2)

Let D be the dictionary of H de�ned by

D = fT (Si) : Si 2 Cg; (2:3)

where the Si's are the three-element subsets of X contained in C. Since C contains at

most

 
N

3

!
= O(N3) three-element subsets of X , this transformation can be done in

polynomial time.

We now show that solving the (�;M)-approximation problem for

f = T (X) =
NX
i=1

eip
N

(2:4)

and � <
1p
N

is equivalent to solving the exact cover by 3-Sets problem (X; C). Suppose C
contains an exact cover C0 for X . Then

k
X
Si2C0

r
3

N

T (Si)� fk = 0: (2:5)

Since there are M = 1
3
N such Si's, the approximation problem has a solution. Thus, a

solution to the exact cover problem implies a solution to the approximation problem.

Conversely, suppose the (�;M)-approximation problem has a solution for � <
1p
N
.

There exist M three-element sets Si 2 C and M coe�cients �n such that

k
MX
n=1

�nT (Sn)� fk <
1
p
N

:

The inner product of each basis vector feig1�i�N with
P

M

n=1 �nT (Sn) must be non-zero,

for otherwise we would have k
P

n

i=1 �iT (Si) � fk � 1p
N

(recall that all components of f

are equal to 1p
N
). Since each T (Si) has non-zero inner products with exactly three bases

vectors and N = 3M , theM sets (Si)1�i�M do not intersect and thus de�ne an exact 3-set

cover of X . This proves that a solution to the approximation problem implies a solution

to the Exact Cover problem, which �nishes the proof of the lemma.

2

We have proved that the (�;M)-approximation problem is NP-complete for �1 = �2 =
1
3

and dictionaries of size O(N3). We now extend the result to arbitrary 0 < �1 < �2 < 1

and dictionaries of size O(Nk) for k > 1. Let (X; C) be an instance of the exact cover



CHAPTER 2. COMPLEXITY OF OPTIMAL APPROXIMATION 11

by 3-sets problem where X is a set of n elements. Following lemma 2.1, we construct an

equivalent (�;M)-approximation problem on a 3n-dimensional space H1. We then embed

this approximation problem in a larger Hilbert space H in order to satisfy the dictionary

size and expansion length constraints. In H2, the orthogonal complement of H1 in H,
we construct a (0; �2N � n)-approximation problem which has a unique solution. The

combined approximation problem in H will be equivalent to the exact cover problem and

will have the requisite M and dictionary size.

Let N be the smallest integer such that N � 3n, Nk � jCj, and �2N � 3n. This N is

bounded by a polynomial in n, since jCj � n
3. Let H be an N -dimensional Hilbert space

and let feig1�i�N be an orthonormal basis of H. Let H1 be the subspace of H spanned by

the vectors feig1�i�3n (recall that N � 3n). We map subsets of X to H1 using (2.2) as we

did in lemma 2.1 and we de�ne

f1 =
p
3�T (X) = �

3nX
i=1

ei (2:6)

where � is a constant we will de�ne below, and we set

D1 = fT (Si) : si 2 Cg: (2:7)

This mapping can be done in time bounded by a polynomial in n because jCj � n
3. From

the proof of lemma 2.1 we see that the function f1 can be approximated with an error of

less than � using n vectors from D1 if and only if X has an exact cover, and it cannot be

approximated to within � using less than n vectors.

We now create a second approximation problem in H2, the orthogonal complement of

H1 in H, so that we can control the size of the expansion. We de�ne

f2 = �

b�2Nc+2nX
i=3n+1

ei (2:8)

and

D2 = fei : 3n < i � b�2Nc+ 2ng (2:9)

This construction, too, can be done in polynomial time in n, since N is bounded by a

polynomial in n. Approximating f2 to within � is only possible if entire set of b�2Nc � n

vectors D2 is contained in the expansion.

The approximation problem equivalent to (X; C) is formed by setting

f = f1 + f2

D = D1 [ D2 (2.10)

and choosing a positive � < �. We take � = 1p
b�2Nc+2n

so f is a unit vector. The combined

dictionary contains jCj+ b�2Nc � n < 2Nk vectors, so it is of O(Nk) by our choice of N .
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To prove the equivalence, we �rst suppose that C contains an exact cover C0 for X .

Then

k
p
3�

X
Si2C0

T (Si) + �

b�2Nc+2nX
i=3n+1

ei � fk = 0: (2:11)

The �rst sum contains n terms and the second contains b�2Nc � n terms, so the total

number of terms M in the expansion is b�2Nc which lies between �1N and �2N for N

su�ciently large. Hence a solution to the exact cover problem implies a solution to the

(�;M)-approximation problem.

Suppose that C does not contain an cover for X . We can partition the error from our

constructed approximation problem,

E = f �
MX
i=1

�igi
(2:12)

into a sum of its projection E1 onto H1 and its projection E2 onto H2. The two subspaces

are orthogonal, so kEk2 = kE1k2 + kE2k2. We must therefore have kE1k2 < � and

kE2k < �. Now to obtain kE2k < � we must include all b�2Nc � n vectors from D2

in the expansion. We can therefore have at most n vectors from D1 in the expansion.

From above, we have that an n-vector approximation to f1 with error less than � is not

possible without an exact cover. Hence, no solution to the (�;M)-approximation problem

exists. This proves that no solution to the exact cover problem implies no solution to the

(�;M)-approximation problem, thus proving the theorem.

2

A corollary of theorem 2.1 shows that �nding approximations which have a minimum

length for a given error tolerance is also intractable.

Corollary 2.1 Let H be an N dimensional Hilbert space. Let k � 1 and let DN be the

set of all dictionaries for H that contain O(Nk) vectors. Let � > 0. The �-shortest

approximation problem is to �nd the smallest M such that a linear combination of M

dictionary elements

~
f� =

MX
i=1

�igi
;

satis�es k ~f� � fk < �(N). The �-shortest approximation problem is NP-hard.

Proof: We prove that the problem is NP-hard by showing that we can use solutions

of the problem to solve an NP-complete problem in polynomial time. Suppose we wish to

decide the (�;M)-approximation problem for some �; �1; �2; f; D, and N . We �rst solve

the �-shortest approximation problem to �nd the smallest number of dictionary elements

M required to approximate f to within �. If M � �2N then the (�;M)-approximation

problem has a solution. If not, there is no such (�;M)-approximation.
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2

Remarks: A problem related to the exact cover by 3-sets problem is the minimum cost

cover problem. For X and C as in the 3-set problem, a cover of X is any collection of sets

from C such that each element of X appears in at least one of the sets. The cost of a cover

is the number of sets from C which make up the cover. The minimum cost cover problem

is to �nd the cover for X with the smallest cost. When an exact cover for X exists, it is

the minimum cost cover, so �nding the minimum cost cover is at least as hard as the exact

cover by 3-sets problem. The problem is NP-hard but is not in NP, because we cannot

verify in polynomial time whether a given cover is minimal. A standard means of �nding

low-cost covers for X is to use a greedy method , and the ratio of the size of the greedily

obtained cover to the size of the minimum cover can be shown to be bounded [12] [31] [35].

In the next section, we will describe a greedy method for approximating solutions to the

M -optimal approximation problem

The optimal approximation criterion of de�nition 2.1 has number of undesirable prop-

erties which are partly responsible for its NP-completeness. The elements contained in

the expansions are unstable in that functions which are only slightly di�erent can have

optimal expansions containing completely di�erent dictionary elements. The expansions

also lack an optimal substructure property. The expansion in M elements with minimal

error does not necessarily contain an expansion in M � 1 elements with minimal error.

The expansions can therefore not be progressively re�ned. Finally, depending upon the

dictionary, the coe�cients of optimal approximations can exhibit instability in that the

expansion coe�cients �i of the M-optimal approximation (2.1) to a vector f can have

MX
i=1

j�ij2 >> jjf jj2:

Consider the case when H = R3, f = (1; 1; 1), and D = fe1; e2; e3; vg, where the ei's are
the Euclidean basis of R3 and v = e1+�f

ke1+�fk
. The M -optimal approximation to f for M =

2 is

~
f =

ke1 + �fk
�

v �
1

�

e1; (2:13)

so we see that
P

M

i=1 j�ij
2 can be made arbitrarily large. In the next section we describe an

approximation algorithm based on a greedy re�nement of the vector approximation, that

maintains an energy conservation relation which guarantees stability.



Chapter 3

Matching Pursuits

A matching pursuit is a greedy algorithm that progressively re�nes the signal approxima-

tion with an iterative procedure instead of solving the optimal approximation problem.

In section 3.1 we review this adaptive approximation procedure due to [58]. Section 3.2

describes a fast numerical implementation, and section 3.3 describes an application to an

adaptive time-frequency decomposition. In the next chapter we introduce an orthogo-

nalized version of the pursuit and compare the performance and complexity of the two

algorithms.

3.1 Non-Orthogonal Matching Pursuits

Let D = fgg2� be a dictionary of vectors with unit norm in a Hilbert space H. Let

f 2 H. The �rst step of a matching pursuit is to approximate f by projecting it on a

vector g0 2 D
f =< f; g0

> g0
+ Rf: (3:1)

Since the residue Rf is orthogonal to g0 ,

kfk2 = j< f; g0
> j2 + kRfk2: (3:2)

We minimize the norm of the residue by choosing g0
which maximizes j< f; g > j. In

in�nite dimensions, the supremum of j< f; g > j may not be attained, so we choose g0
such that

j< f; g0
> j � � sup

2�
j< f; g > j; (3:3)

where � 2 (0; 1] is an optimality factor. The vector g0 is chosen from the set of dictionary

vectors that satisfy (3.3), with a choice function whose properties vary depending upon

the application.

14
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The pursuit iterates this procedure by subdecomposing the residue. Let R0
f = f .

Suppose that we have already computed the residue Rk
f . We choose gk 2 D such that

j< R
k
f; gk

> j � � sup
2�

j< R
k
f; g > j (3:4)

and project Rk
f on gk

R
k+1

f = R
k
f� < R

k
f; gk

> gk
: (3:5)

The orthogonality of Rk+1
f and gk

implies

kRk+1
fk2 = kRk

fk2 � j < R
k
f; gk

> j2: (3:6)

By summing (3.5) for k between 0 and n � 1 we obtain

f =
n�1X
k=0

< R
k
f; gk

> gk
+ R

n
f: (3:7)

Similary, summing (3.5) for k between 0 and n � 1 yields

kfk2 =
n�1X
k=0

j< R
k
f; gk

> j2 + kRn
fk2: (3:8)

The residue Rn
f is the approximation error of f after choosing n vectors in the dictio-

nary and the energy of this error is given by (3:8). For any f 2 H, the convergence of the
error to zero is shown [58] to be a consequence of a theorem proved by Jones [36]

lim
n!1

kRn
fk = 0: (3:9)

Hence

f =
1X
k=0

< R
k
f; gk

> gk
; (3:10)

kfk2 =
1X
k=0

j< R
k
f; gk

> j2: (3:11)

In in�nite dimensions, the convergence rate of this error can be extremely slow. In

�nite dimensions, let us prove that the convergence is exponential. For any vector e 2 H,
we de�ne

�(e) = sup
2�

j<
e

kek
; g > j:

For simplicity, for the remainder of the thesis we will take the optimality factor � to be

1 for �nite dimensional spaces unless otherwise speci�ed. Hence, the chosen vector gk
satis�es

�(Rk
f) =

j< R
k
f; gk

> j
kRk

fk
:
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Equation (3.6) thus implies that

kRk+1
fk2 = kRk

fk2(1� �
2(Rk

f)): (3:12)

Hence norm of the residue decays exponentially with a rate equal to �1
2
log(1� �

2(Rk
f)).

Since D contains at least a basis of H and the unit sphere of H is compact in �nite

dimensions, we can derive [58] that there exists �min > 0 such that for any e 2 H

�(e) � �min: (3:13)

Equation (3.12) thus proves that the energy of the residue R
k
f decreases exponentially

with a minimum decay rate equal to �1
2
log(1� �

2
min

).

These non-orthogonal matching pursuits are similar in spirit to a class of iterative

algorithms for estimating conditional expectations called projection pursuits proposed by

[32] [54] and [55] and implemented by [21].

The central problem is to estimate the conditional expectation of a real-valued random

variable Y with respect to an RN -valued random variable X . Speci�cally, for any x 2 RN

we would like to compute the expectation

f(x) = E(Y jX = x) (3:14)

from K observations of the variables (X1; Y1); . . .(XK ; YK). The algorithm works by iter-

atively projecting the function f onto a series of ridge functions, to obtain an expansion

of the form

f(x) =
1X
j=1

gj(a
T

j x): (3:15)

This projection pursuit algorithm was proved to converge strongly in [36], and from this

result the proof of the convergence of the non-orthogonal matching pursuit is derived.

The projection pursuits di�er signi�cantly from matching pursuits in that the function

f(x) is not known exactly, so its applicability and the numerical considerations for its

implementation are quite di�erent.

3.2 Numerical Implementation of Matching Pursuits

We suppose that H is a �nite dimensional space and D a dictionary with a �nite number

of vectors. The optimality factor � is set to 1.

The matching pursuit is initialized by computing the inner products f< f; g >g2��
and we store these inner products in an open hash table [11], where they are partially

sorted. The algorithm is de�ned by induction as follows. Suppose that we have already

computed f< R
n
f; g >g2�, for n � 0. We must �rst �nd gn

such that

j< R
n
f; gn > j = sup

2�
j< R

n
f; g > j: (3:16)
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Since all inner products are stored in an open hash table, this requires O(1) operations on

average. Once gn is selected, we compute the inner product of the new residue R
n+1

f

with all g 2 D using an updating formula derived from equation (3.5)

< R
n+1

f; g >=< R
n
f; g > � < R

n
f; gn > < gn ; g > : (3:17)

Since we have already computed < R
n
f; g > and < R

n
f; gn

>, this update requires

only that we compute < gn
; g >. Dictionaries are generally built so that few such inner

products are non-zero, and non-zero inner products are either precomputed and stored

or computed with a small number of operations. Suppose that the inner product of any

two dictionary elements can be obtained with O(I) operations and that there are O(Z)

non-zero inner products. Computing the products f< R
n+1

f; g >g2� and storing them

in the hash table thus requires O(IZ) operations. The total complexity of P matching

pursuit iterations is thus O(PIZ).

3.3 Application to Dictionaries of Time-Frequency Atoms

Signals such as sound recordings contain structures that are well localized both in time

and frequency. This localization varies depending upon the sound, which makes it di�cult

to �nd a basis that is a priori well adapted to all components of the sound recording. Dic-

tionaries of time-frequency atoms include waveforms with a wide range of time-frequency

localization are thus much larger than a single basis. Such dictionaries are generated by

translating, modulating, and scaling a single real window function g(t) 2 L
2(R). We sup-

pose that that g(t) is even, kgk = 1,
R
g(t)dt 6= 0, and g(0) 6= 0. We denote  = (s; u; �)

and

g(t) =
1
p
s

g(
t� u

s

)ei�t: (3:18)

The time-frequency atom g(t) is centered at t = u with a support proportinal to s. Its

Fourier transform is

ĝ(!) =
p
sĝ(s(! � �))e�i(!��)u; (3:19)

and the Fourier transform is centered at ! = � and concentrated over a domain proportional

to 1
s
. For small values of s the atoms are well localized in time but poorly localized in

frequency; for large values of s vice versa.

The dictionary of time-frequency atoms D = (g(t))2� is a very redundant set of

functions that includes both window Fourier frames and wavelet frames [13]. When the

window function g is the Gaussian g(t) = 21=4e��t
2
, the resulting time-frequency atoms

are Gabor functions, and have optimal localization in time and in frequency. A matching

pursuit decomposes any f 2 L2(R) into

f =
+1X
n=0

< R
n
f; gn > gn ; (3:20)
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where the scales, position and frequency n = (sn; un; �n) of each atom

gn
(t) =

1
p
s
n

g(
t� un

sn

)ei�nt (3:21)

are chosen to best match the structures of f . This procedure approximates e�ciently any

signal structure that is well-localized in the time-frequency plane, regardless of whether

this localization is in time or in frequency.

To any matching pursuit expansion[39][46], we can associate a time-frequency energy

distribution de�ned by

Ef(t; !) =
1X
n=0

j< R
n
f; gn > j

2
Wgn(t; !); (3:22)

where

Wgn(t; !) = 2 exp

"
�2�

 
(t� u)2

s
2

+ s
2(! � �)2

!#
;

is the Wigner distribution [8] of the Gabor atom gn . Its energy is concentrated in the

time and frequency domains where gn is localized. Figure 3.2 shows Ef(t; !) for the

signal f of 512 samples displayed in Fig. 3.1. This signal is built by adding waveforms of

di�erent time-frequency localizations. It is the sum of cos((1� cos(ax))bx), two truncated

sinusoids, two Dirac functions, and cos(cx). Each Gabor time-frequency atom selected by

the matching pursuit is a dark elongated Gaussian blob in the time-frequency plane. The

arch of the the cos((1 � cos(ax))bx) is decomposed into a sum of atoms that covers its

time-frequency support. The truncated sinusoids are in the center and upper left-hand

corner of the plane. The middle horizontal dark line is an atom well localized frequency

that corresponds to the component cos(cx) of the signal. The two vertical dark lines are

atoms very well localized in time that correspond to the two Diracs.
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Figure 3.1: Synthetic signal of 512 samples built by adding cos((1 � cos(ax))bx), two

truncated sinusoids, two Dirac functions, and cos(cx).

Figure 3.2: Time frequency energy distribution Ef(t; !) of the signal in the �gure above.

The horizontal axis is time and the vertical axis is frequency. The darkness of the image

increases with Ef(t; !).
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Orthogonal Matching Pursuits

Matching pursuits do not in general converge in a �nite number of iterations in a �nite

dimensional space. The reason is that successive iterations of the algorithm can reintroduce

components into the residue of dictionary elements already removed. In section 4.1 we

present an orthogonalized version of the matching pursuit algorithm which converges in

a �nite number of iterations in a �nite dimensional space. The stability of the selected

elements is of great importance for orthogonal pursuits. In section 4.2 we show that it is

possible for both orthogonal and non-orthogonal pursuits to select degenerate collections of

dictionary elements for function expansions, even if alternative, non-degenerate expansions

exists. We describe a numerical implementation of an orthogonal pursuit and compare the

computational complexity to that of a non-orthogonal matching pursuit in in section 4.3.

In section 4.4 we compare the accuracy and stability of non-orthogonal and orthogonal

pursuits with a dictionary of time-frequency atoms on a set of speech data.

4.1 Orthogonal Matching Pursuits

The approximations derived from a matching pursuit can be re�ned by orthogonalizing the

directions of projection. The resulting orthogonal pursuit converges with a �nite number of

iterations in �nite dimensional spaces, which is not the case for a non-orthogonal pursuit.

A similar algorithm has been developed independently and in parallel by [43].

At each iteration, the vector gk selected by the matching algorithm is a priori not

orthogonal to the previously selected vectors fgpg0�p<k. In subtracting the projection of

R
k
f over gk the algorithm reintroduces new components in the directions of fgpg0�p<k .

This can be avoided by orthogonalizing fgpg0�p<k with a Gram-Schmidt procedure. Let

u0 = g0
. As in a matching pursuit, we choose gk

that satis�es (3:4). This vector is

orthogonalized with respect to the previously selected vectors by computing

uk = gk
�

k�1X
p=0

< gk
; up >

jjupjj2
up: (4:1)

20
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The residue is then de�ned by

R
k+1

f = R
k
f �

< R
k
f; uk >

jjukjj2
uk: (4:2)

The vector Rk
f is the orthogonal projection of f on the orthogonal complement to the

space generated by the vectors fgpg0�p<k . Equation (4.1) implies that < R
k
f; uk >=<

R
k
f; gk

> and thus

R
k+1

f = R
k
f �

< R
k
f; gk

>

jjukjj2
uk: (4:3)

Since Rk+1
f and uk are orthogonal,

jjRk+1
f jj2 = jjRk

f jj2 �
j < R

k
f; gk

> j2

jjukjj2
: (4:4)

If Rk
f 6= 0, < R

k
f; gk

>6= 0 and since R
k
f is orthogonal to all previously selected

vectors the selected vectors fgpg0�p<k are linearly independent. Since R
0
f = f , from

equations (4.3) and (4.4), similarly to equations (3.7) and (3.8), we derive that for any

n > 0

f =
X

0�k<n

< R
k
f; gk

>

jjukjj2
uk + R

n
f; (4:5)

and

jjf jj2 =
X

0�k<n

j < R
k
f; gk

> j2

jjukjj2
+ jjRn

f jj2: (4:6)

The theorem below proves that that the residues of an orthogonal pursuit converge strongly

to zero and that the number of iterations required for convergence is less than or equal

to the dimension of the space H. Thus in �nite dimensional spaces, orthogonal matching

pursuits are guaranteed to converge in a �nite number of steps, unlike non-orthogonal

pursuits.

Theorem 4.1 Let H be anN -dimensional Hilbert space and let f 2 H (N may be in�nite).

An orthogonal pursuit converges in less than or equal to N iterations. The residue R
n
f

de�ned in (4.3) satis�es

lim
n!N�1

kRn
fk = 0: (4:7)

Hence

f =
N�1X
n=0

< R
n
f; gn >

kukk2
un (4:8)

and

kfk2 =
N�1X
n=0

j< R
n
f; gn > j2

kukk2
: (4:9)
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Proof: We �rst suppose that < R
k
f; gk

>6= 0 for k < N . If not, then we are through,

since condition (3.3) implies that < R
k
f; g >= 0 for all g 2 D, and because the vectors

in D span H, we must have R
k
f = 0. Because R

k
f is orthogonal to fgpg0�p<k and

< R
k
f; gk

>6= 0, the set fgpg0�p�k must be linearly independent. When N is �nite, the

N linearly independent vectors fgpg0�p<N�1 form a basis of H, and the orthogonalized

vectors fupg form an orthogonal basis of H. The result follows directly.
When N is in�nite, we have from the Bessel inequality that

1X
k=0

j< f; uk > j2

kukk2
� kfk2: (4:10)

By (3.3), we must have

lim
k!1

sup
2�

j< R
k
f; g > j = 0; (4:11)

so R
k
f converges weakly to 0. To show strong convergence, we compute for n < m the

di�erence

kRn
f �R

m
fk2 =

mX
k=n+1

j< f; uk > j2

kukk2

�
1X

k=n+1

j< f; uk > j2

kukk2
; (4.12)

which goes to zero as n goes to in�nity since the sum is bounded. The Cauchy criterion is

satis�ed, so Rn
f converges strongly to its weak limit of 0, thus proving the result.

2

The orthogonal pursuit yields a function expansion over an orthogonal family of vectors

fukg0�p<n. To obtain an expansion of f over fgng0�k<N we must make a change of basis.

The Gram-Schmidt vector uk can be expanded within fgpg0�p�k

uk =
nX

p=0

bp;kgp : (4:13)

Inserting this expression into (4.8) yields

f =
MX
n=0

< R
n
f; gn >

jjunjj2
nX

p=0

bp;ngp : (4:14)

In the in�nite dimensional case, without absolute convergence of the in�nite series, we

cannot rearrange the terms of this double summation to obtain

f =
X

0�p<M

gp

X
p�n<M

bp;n

< R
n
f; gn

>

jjunjj2
: (4:15)
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The second summation that de�nes the expansion coe�cients over the family fgpg0�p<M
can indeed diverge. This happens when the family of selected elements is not a Riesz basis

of the closed space it generates.

The residues of orthogonal matching pursuits in general decrease faster than the non-

orthogonal matching pursuits. However, this orthogonal procedure can yield unstable

expansions by selecting ill-conditioned family of vectors. It also requires many more oper-

ations to compute because of the Gram-Schmidt orthogonalization procedure. In the next

section we show that in some cases, it is impossible to invert orthogonal pursuit function

expansions, even when the dictionary contains a frame. The computational implementation

and complexity of these two algorithms is compared in section 4.4.

4.2 Stability of Pursuits

The following theorem proves that there exist functions and dictionaries for which the or-

thogonal pursuit expansion in terms of the orthogonalized vectors uk cannot be transformed

into an expansion in terms of the original dictionary elements g, even when the dictionary

contains an orthonormal basis. We construct a function which has energy spread all across

the orthonormal basis. The ill-conditioned elements are selected because they are much

better suided to expanding the function in question than the vectors of the orthonormal

basis.

Theorem 4.2 There exists a function f 2 L
2[0; 1] and a dictionary for L2[0; 1] that con-

tains an orthonormal basis such that the dictionary elements in the orthogonal matching

pursuit expansion of f do not form a Riesz basis.

Proof: We �rst de�ne a set of functions on L
2[0; 1] which we will use to construct our

dictionary and our function. Let

wk(t) = 22k�[1�2�k;1�2�k+2�4k](t); (4:16)

for k � 1. The wk's are a set of step functions which tend towards a delta function at t = 1

as k goes to in�nity. Our dictionary consists of the Fourier basis for L2[0; 1] together with

the set (xk)k�1 de�ned by,

x1(t) = w1(t) (4.17)

xk(t) = (1� 2�k)
1
2w1(t) + 2�

k
2wk(t): (4.18)

We have

D = (xk)k�1 [ (e2�ikt)k2Z: (4:19)

We take as our function to decompose,

f =
1X
k=1

2�2kwk: (4:20)
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The Fourier basis is ill-suited to representing highly spatially localized functions such

as the wk's which comprise f . Hence, the pursuit will select the localized functions xk for

the expansion, despite the degeneracy of this set.

We prove by induction that the selected dictionary elements are x1; x2; . . ., and that

R
n
f is given by

R
n
f =

1X
k=n+1

2�2kwk: (4:21)

The expression holds for R0
f = f . For f we have,

j< f; e
2�imt

> j = j
Z 1

0
R
n
f(x)e�2�imt

dxj (4.22)

�
Z 1

0
jRn

f j (4.23)

=
1X
k=1

2�2k22k2�4k =
1

15
(4.24)

and

j< f; x1 > j = 2�2 (4.25)

j< f; xm > j = (1� 2�m)
1
2 2�2 + 2�

m
2 2�2m < j< f; x1 > j: (4.26)

Hence the �rst selected dictionary element will be x1.

We now suppose that Rn
f =

P1
k=n+1 2

�2k
wk. We compute the inner product of Rn

f

with all elements of the dictionary to determine the next selected element. For the Fourier

basis, we have

j< R
n
f; e

2�imt
> j �

1X
k=n+1

2�2k22k2�4k (4.27)

=
2�4n

15
: (4.28)

For the vk's we have

j< R
n
f; xm > j = 0; for m � n (4.29)

= 2�
5
2
m
; for m > n; (4.30)

so we have maxg2D j < R
n
f; g > j = j< R

n
f; xn+1 > j. The normalized projection of

xn+1 onto the complement of the span of the set fx1; . . .xng is wn+1. We remove this

normalized projection from R
n
f to obtain,

R
n+1

f =
1X

k=n+2

2�2kwk: (4:31)
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The set (xk)k�1 is clearly not a Riesz basis, because

1X
k=1

j< xk; x1 > j2 =1 (4:32)

and

lim
n!1

1X
k=1

j< xk;

xn� < xn; x1 > x1

kxn� < xn; x1 > x1k
> j2 (4.33)

= lim
n!1

1X
k=1

j< xk; wn > j2 = 0: (4.34)

2

An equivalent result holds for non-orthogonal matching pursuits but the proof is a bit

more complicated. Because non-orthogonal pursuits yield expansions in terms of dictionary

elements, rather than in terms of the orthogonalized dictionary elements, the selection of

a degenerate collection does not pose di�culties.

Theorem 4.3 There exists a function f 2 L
2[0; 1] and a dictionary for L2[0; 1] that con-

tains an orthonormal basis such that the dictionary elements in the non-orthogonal match-

ing pursuit expansion of f do not form a Riesz basis.

We show that functions and dictionaries exist for which the selected dictionary elements

fail to satisfy the upper or lower frame bounds. We �rst construct from the functions wk

above dictionary a function for which the selected elements do not satisfy the upper frame

bound.

Our dictionary consists of the Fourier basis for L2[0; 1] together with the degenerate

sets (xk)k�1 and (yk)k�1 de�ned by,

x1 = y1 = w1 (4.35)

xk =
1
p
2
w1 +

1
p
2
wk (4.36)

yk =
1p
2
w1 �

1p
2
wk (4.37)

We have

D = (xk)k�1 [ (yk)k�1 [ (e2�ikt)k2Z: (4:38)

We again take as our function to decompose,

f =
1X
k=1

2�2kwk: (4:39)
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The idea of the proof is the same as before. The additional elements in the dictionary

are necessary because when the non-orthogonalized pursuit removes xk from the current

residue, it introduces a component of w1 into the next residue. We remove yk next in order

to eliminate this w1 component and keep the problem compartmentalized.

We prove by induction that the residue R2n+1
f =

P1
k=n+1 2

�2k
wk. We assume that we

have a choice function which selects the xk 's over the yk 's when maximum inner products

are equal. The �rst selected dictionary elements will be x1, followed by x2; y2; x3; y3; . . ..

We �rst show that R1
f =

P1
k=1 2

�2k
wk. We have

j< f; x1 > j = j< f; y1 > j = 2�2; (4.40)

j< f; xm > j =
1
p
2
2�2 +

1
p
2
2�2m; for m > 1 (4.41)

j< f; ym > j =
1
p
2
2�2 �

1
p
2
2�2m; for m > 1 (4.42)

(4.43)

and

j< f; e
2�imt

> j �
1

15
; (4:44)

so the �rst selected dictionary element is x1. We thus obtain R
1
f =

P1
k=2 2

�2k
wk.

Suppose now that we have R2n+1
f =

P1
k=n+1 2

�2k
wk. The inner products of R

2n+1
f

with the dictionary elements will be

j< R
2n+1

f; xm > j = j< R
2n+1

f; ym > j = 0; for m � n (4.45)

j< R
2n+1

f; xm > j = j< R
2n+1

f; ym > j =
1p
2
2�2m; for m > n (4.46)

j< R
2n+1

f; e
2�imt

> j �
2�4n

15
: (4.47)

Thus, the next selected element will be xn+1 and

R
2n+2

f = �
1

2
(w1 � wn+1) +

1X
k=n+2

2�2kwk: (4:48)

The inner products of R2n+2
f with the dictionary elements will be

j< R
2n+2

f; xm > j = 0; for m � n + 1 (4.49)

j< R
2n+2

f; xm > j =
1
p
2
2�2m; for m > n + 1 (4.50)

j< R
2n+2

f; ym > j = 0; for m � n (4.51)

j< R
2n+2

f; ym > j =
1
p
2
2�2m; for m > n (4.52)

j< R
2n+2

f; e
2�imt

> j � 2�2(n+1)[�
1

2
2�4 +

1

2
2�4(n+1)] + 2�4(n+2)

16

15
: (4.53)
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The maximum inner product will be j< R
2n+2

f; yn+1 > j. Subtracting the component of

yn+1 from R
2n+2

f , we obtain the desired result, R2(n+1)+1
f =

P1
k=n+2 2

�2k
wk.

We have

1X
k=1

j< xm; xk > j2 =
1X
k=1

j< xm; yk > j2 = (4.54)

1X
k=1

j< ym; xk > j2 =
1X
k=1

j< ym; yk > j2 =1; (4.55)

so we see that the set of selected dictionary elements is degenerate.

2

We now construct a dictionary and function for which the selected elements do not

satisfy the lower frame bound. We create three orthogonal families of step functions from

which we will build our dictionary and our function. We let

xk(t) = 22(k+4)�[1�2�k;1�2�k+2�4(k+4)](t) (4.56)

yk(t) = 22(k+4)�[1�2�k+2�4(k+4);1�2�k+2 2�4(k+4)](t) (4.57)

zk(t) = 22(k+4)�[1�2�k+22�4(k+4);1�2�k+3 2�4(k+4)](t): (4.58)

Our dictionary will consist of the Fourier basis (e2�int)n2Z together with three orthonor-

mal families (xk), (yk), and (zk). We will build our function f from a sum of orthogonal

pieces, piece k of which will be decomposed into the sequence xk ; yk; zk.

The three families which form the dictionary are

ak =
3

5
xk +

4

5
yk (4.59)

bk = xk (4.60)

ck =
q
1� �

2
k
yk + �kzk : (4.61)

Here (�k) is a sequence which decreases monotonically to 0. Our function f will consist of

a linear sum of the functions

fk = 4xk + 3yk �
21

25

�kq
1� �

2
k

: (4:62)

We use the cycle of 3 elements, so that we can progressively eliminate the pieces fk from

f without any of the selected elements having to contain a large component of zk . We

also must build the 3-cycle so that zk is contained in its span. We can then show that the

selected elements are not a frame because the sum of the squares of their inner products

with zk can be made arbitrarily small.
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By adjusting the heights and widths of the functions (xk); (yk); and (zk), we can make

the magnitude of the inner products of the residues with the Fourier basis as small as we

like. By adjusting the rate of decay of the coe�cients of the fk we can ensure that ak is

selected, followed by bk then ck. We take

f =
1X
k=1

2�3kfk : (4:63)

The details of the proof are similar to the cases above.

2

4.3 Numerical Implementation of Orthogonal Matching Pur-

suits

We suppose that H is a �nite dimensional space and D a dictionary with a �nite number

of vectors. The optimality factor � is set to 1.

The initialization and selection portions of the orthogonal matching pursuit algorithm

are implemented in the same way as they are for the non-orthogonal algorithm. The

di�erence between the two algorithms is in the updating of the inner products < R
n
f; g >

after a vector has been selected. Once the vector gn is selected, we must compute the

expansion coe�cients of the orthogonal vector un

un =
nX

p=0

bp;ngp : (4:64)

The Gram-Schmidt orthogonalization scheme can be used to obtain these coe�cients in

O(n2I) time, but the numerical properties of this scheme are not good. A better method

is to use the fact that

un = gn � Pn�1gn (4:65)

where Pn�1 is the projection onto the span of the vectors fgkg0�k�n�1. We can write this

projection operator Pn�1 as the product

Pn�1 = Gn�1(G
�
n�1Gn�1)

�1
G
�
n�1; (4:66)

where Gn�1 is an n by n matrix which has as its columns the vectors fggkg0�k�n�1 . For
p < n the coe�cient bp;n is given by the p

th entry in the column vector�(G�
n�1Gn�1)

�1
G
�
n�1gn ,

and for p = n we have bn;n = 1. We compute the bp;n's in two steps. We �rst form the vec-

tor G�
n�1gn . This requires computing the n inner products < gk

; gn > for 0 � k < n and

so requires O(nI) operations. We then form the matrix G
�
n�1Gn�1. This matrix is built

recursively by adding an additional row and column to G�
n�2Gn�2. This row and column

have entries of the form < gk
; gn�1

> for k � n� 1, and since we compute these values in
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step n� 1 while forming of G�
n�2gn�1 , this step requires no additional computations. We

can use the LDU decomposition from step n�1 as part of a block LDU decomposition [25],

so computation of the inverse requires O(n2) steps. The total work required to compute

the coe�cients bp;n is then O(n2).

We then compute the inner product of the new residue Rn+1
f with all g 2 D� using

the orthogonal updating formula (4.3)

< R
n+1

f; g >=< R
n
f; g > � < R

n
f; gn > < un; g > : (4:67)

Since

< un; g >=
nX

p=0

bp;n < gp ; g >; (4:68)

computing f< R
n+1

f; g >g2� requires O(nIZ) operations. The total number of opera-

tions to compute P orthogonal matching pursuit iterations is therefore O(P 3+P
2
IZ). For

P iterations, the non-orthogonal pursuit algorithm is P times faster than the orthogonal

one. When P is large, which is the case in many signal processing applications, the or-

thogonal pursuit algorithm is much slower and requires too many calculations for real time

processing. When P remains small, the orthogonal pursuit is more advantageous because

it converges faster.

4.4 Comparison of Non-orthogonal and Orthogonal Pur-

suits

4.4.1 Accuracy

To compare the performance of the orthogonal and non-orthogonal pursuits, we segmented

a digitized speech recording into 512-sample pieces and decomposed the pieces using both

algorithms. The dictionary used was the discretized described in section 3.3.

Figure 4.1 shows for both algorithms the decay of the residual kRn
fk as a function of

n for a 512 sample speech segment. When n is close to 512, the dimension of the signal

space, the orthogonal pursuit residue converges very rapidly to 0. The non-orthogonal

pursuit, on the other hand, converges exponentially with a slow rate when n is large. We

see, then, that orthogonal pursuits yield much better approximations when n is large.

The performance of the two algorithms is similar in the early part of the expansion,

however. The reason is that for the early part of the expansion the selected vectors are

nearly orthogonal, so the orthogonalization step does not contribute greatly. This near-

orthogonality comes from the fact that for both pursuits < R
n+1

f; gn >= 0, so

j< R
n+1

f; g > j2

kRn+1
fk2

� (1� j< g ; gn > j
2): (4:69)

The vector gn+1
is chosen by �nding the  2 � for which the left hand side of (4.69) is

maximized. We see from (4.69) that there is a penalty for selecting dictionary elements g
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Figure 4.1: log kRn
fk as a function of the n. The top curve shows the decay of kRn

fk for
a non-orthogonal pursuit and the bottom for an orthogonal pursuit.

for which j< g ; gn > j is large. Provided that j< gn ; gn+1
> j is small, a similar (but

smaller) penalty exists for selecting a gn+2
which correlates with either gn or gn+1

, and

so on. Hence, the initially selected vectors tend to be orthogonal.

These nearly-orthogonal elements which comprise the initial terms of the expansion

correspond to the signal's \coherent structures," the portions of the signal which are well-

approximated by dictionary elements. We describe these coherent structures in more detail

in chapter 7. The correlation ratio, de�ned by

�(Rn
f) = sup

2�

j < R
n
f; g > j

kRn
fk

(4:70)

is an important measure of the degree to which structures in the residue R
n
f resemble

dictionary elements. A signal f which possess structures which are well-represented by

dictionary elements will have large values of �(f). As the matching pursuit proceeds, these

structures are removed, and �(Rn
f) decreases. Experiments show that �(Rn

f) converges

to a dictionary dependent constant, �1. The coherent structures of f are de�ned to be

those structures selected before �(Rn
f) is su�ciently close to the value �1. We denote by

Nc(f) the number of coherent structures in f .

For many applications, we are interested in only the coherent portion of the expansion

of f . Although for large expansions, the orthogonal pursuit produces a much smaller error,

for the coherent portion of the expansion, the di�erence between the two algorithms is not
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great. For the discretized Gabor dictionary with 512 samples, we �nd that �1 � 0:17.

Selected dictionary elements are deemed to be coherent until a running average of the

kRn
fk's is within 2 percent of �1.

For the 274 speech segments tested, the average number of coherent structures was

72.7. For the coherent portion of the signal, the norm of the residual generated by the

orthogonal pursuit was on average only 18.5 percent smaller than the norm of the residual

for the matching pursuit. More precisely, let R
n
f denote the non-orthogonal pursuit

residue, and let R
n

o
f denote the orthogonal pursuit residue. For the speech segments

tested, the ratio
kRNcfk
kRNco fk

ranged from 0.864 to 1.771 with an average of 1:185 and a standard

deviation of 0.176. We see, then, that for the coherent part of the signal, the bene�ts of

the orthogonalization are not large.

The computational cost of performing a given number of iterations of an orthogonal

pursuit is much higher than for the non-orthogonal pursuit, as we showed in the last section.

However, because of the better convergence properties of the orthogonal pursuit, we need

not perform as many iterations to obtain the same accuracy as a non-orthogonal pursuit.

For the coherent portions of the tested speech segments, the orthogonal pursuit required

an average of Nc� 4 iterations to obtain an error equivalent to that of the non-orthogonal

pursuit with Nc iterations. The implementation of the pursuit used requires I = O(1)

operations to compute the inner products < g ; g0 > and on average, Z = N = 512 of

these inner products are non-zero. The non-orthogonal expansion of the coherent part

of the signal thus requires roughly 4� 104I operations whereas the orthogonal expansion

requires roughly 2� 106I operations. The cost is two orders of magnitude higher for a 20

percent improvement in the error.

4.4.2 Stability

Orthogonal pursuits yield expansions of the form

f =
nX

k=0

�kuk + R
n
f (4:71)

where the uk's are orthogonalized dictionary elements. When the selected set of dictionary

elements is degenerate (when the set does not form a Riesz basis for the space it spans),

these expansions cannot be converted into expansions over the dictionary elements g .

Our results from section 4.2 shows that this is a legitimate concern, at least in theory. We

now examine numerically the stability of the collection of dictionary elements selected by

orthogonal and non-orthogonal pursuits.

To compare the degeneracy of the sets of elements selected by the two algorithms, we

computed the 2-norm condition number for the Gram matrix Gi;j =< gi
; gj

> for twenty

128-sample speech segments. Figure 4.2 shows for both pursuits the condition number �(n)

of the Gram matrix as a function of the number of iterations n for one 128-sample speech

segment. As we discussed above, the initially selected coherent structures are roughly
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Figure 4.2: log10 �(n) for the Gram matrix of the selected dictionary elements as a function

of the number of iterations. The top curve is the condition number for a non-orthogonal

pursuit, and the bottom is for an orthogonal pursuit. The dashed line is at Nc.



CHAPTER 4. ORTHOGONAL MATCHING PURSUITS 33

orthogonal and form a well-conditioned set for both pursuits. As the pursuit proceeds, the

set selected by the non-orthogonal pursuit grows more and more singular, while the set

selected by the orthogonal pursuit stays well-conditioned. The reason is that for the non-

orthogonal pursuit, the penalty (4.69) against selecting a gn+k
that correlates with gn

decreases as k increases. Hence, as the number of iterations increases beyond the number

of coherent structures, the set grows more and more singular. For the orthogonal pursuit,

on the other hand, we have

j< R
n+1

f; g > j2

kRn+1
fk2

� k(I � Pn)gk2; (4:72)

where Pn is the orthogonal projection onto the space spanned by g0
. . .gn . Hence there

is a penalty against selecting for gn+1
a g which correlates strongly with any of the

previously selected elements. The table below summarizes the results.

Pursuit mean(log(�(N))) mean(log(�(Nc)))

Non-orthogonal 12.2 1.53

Orthogonal 2.09 0.621



Chapter 5

Group Invariant Dictionaries

The translation, dilation, and frequency modulation of any vector that belongs to the

Gabor dictionary still belongs to this dictionary. The dictionary invariance under the

action of any operators that belong to the group of translations, dilations or frequency

modulations implies important invariance properties of the matching pursuit. We study

such properties when the dictionary is left invariant by any given group of unitary linear

operators G = fG�g�2
 that is a representation of the group 
. Since each operator G�

is unitary, its inverse and ajoint is G��1 , where �
�1 is the inverse of � in 
. For example,

the unitary groups of translation, frequency modulation and dilation over H = L2(R) are

de�ned respectively by G�f(t) = f(t � �), G�f(t) = e
i�t
f(t) and G�f(t) =

1p
s�
f( t

s�
).

De�nition 5.1 A dictionary D = fgg2� is invariant with respect to the group of unitary

operators G = fG�g�2
 if and only if for any g 2 D and � 2 
, G�g 2 D.

The Gabor dictionary is invariant under the group generated by the groups of trans-

lations, modulations and dilations. The properties of the corresponding matching pursuit

depends upon the choice function C that chooses for any f 2 H an element g0 = C(E[f ])

from the set

E[f ] = fg 2 D : j < f; g > j � � sup
g2D

j < f; g > jg

onto which f is then projected. The following proposition imposes a commutatitivity

condition on the choice function C so that the matching pursuit commutes with the group

operators.

Proposition 5.1 Let D be invariant with respect to the group of unitary operators G =

fG�g�2
. Let f 2 H and

f =
n�1X
k=0

angn + R
n
f

be its matching pursuit computed with the choice function C. If for any n 2 N

CG�E[R
n
f ] = G�CE[R

n
f ]; (5:1)

34
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then the matching pursuit decomposition of G�f is

G�f =
n�1X
k=0

anG�gn
+ G�R

n
f: (5:2)

The condition (5.1) means that an element chosen from the E[Rn
f ] transformed by

G� is the transformation by G� of the element chosen among E[Rn
f ]. Equation (5.2)

proves the vectors selected by the matching pursuit of G�f are the vectors selected for the

matching pursuit of f transformed by G� and the residues of G�f are equal to the residues

of f transformed by G� .

Proof: Since the group is unitary, for any g 2 D

< G�f; g >=< f;G��1g > :

Hence g 2 E[G�f ] if and only if G��1g 2 E[f ] which proves that E[G�f ] = G�E[f ]. By

using the commutativity (5.1) of the choice function with respect to G� we then easily

prove (5.2) by induction.

2

The di�culty is now to prove that there exists a choice function that satis�es the

commutativity relation (5.1) for all f 2 H or at least for almost all f 2 H. The following
proposition gives a necessary condition to construct such choice functions.

Proposition 5.2 Let K be set of functions f 2 H such that there exists G� 6= I with

E[f ] = E[G�f ]: (5:3)

There exists a choice function C such that for any f 2 H �K and G� 2 G

CG�E[f ] = G�CE[f ]: (5:4)

Proof: To de�ne such a choice function we construct the equivalence classes of the

equivalence relation R1 in H de�ned by f R1 h if and only if there exists G� 2 G such that

f = G�h. The axiom of choice guarantees that there exists a choice function that chooses

an element from each equivalence class. Let H1 be the set of all class representatives. The

axiom of choice also guarantees that for any f 2 H1 there exists a choice function C that

associates to any set E[f ] an element within this set. To extend this choice function we

de�ne a new equivalence relation R2 in H de�ned by f R2 h if and only if there exists

G� 2 G such that f = G�h and E[f ] = E[h]. All elements that belong to H�K correpond

to equivalence classes of 1 vector. For each equivalence class, we choose a representative

f . There exists G� such that G�f 2 H1. Since G� is unitary, for any g 2 D

< G�f; g >=< f;G��1g > :
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Hence, E[G�f ] = G�E[f ]. For any h that is equivalent to f with respect to R2, we de�ne

C(E[h]) = C(E[f ]) = G��1C(E[G�f ]) = G��1C(G�E[f ]) 2 E[f ]: (5:5)

This choice function associates a unique element to each di�erent set E[f ]. If f 2 H �K,

property (5.5) implies that this choice function satis�es (5.4).

2

Proposition 5.3 When H is an in�nite dimensional space, if for any g 2 D and G� 6= I

there exists A such that for any h 2 H

jjhjj2 � A

X
n2N

j < h;G�ng > j2; (5:6)

then K = f0g.

Proof: If there exists f 2 H and G� such that E[f ] = E[G�f ], then for any n 2 N,

E[f ] = E[G�nf ], where G�nf is the nth power of G� . Hence, for any g 2 E[f ] and n 2 N

j < f;G�ng > j � ��(f):

If we set h = f in (5.6), this property implies that �(f) = 0 otherwise f would have an

in�nite norm. Since linear combinations of elements in D are dense in H, if �(f) = 0 then

f = 0.

2

Property (5.6) is satis�ed for the Gabor dictionary and the group G composed of di-

lations, translations and modulations for H = L2(R). This comes from our ability to

construct frames of L2(R) through translations and dilations or frequency modulations

of Gaussian functions [13]. This result implies that there exists a choice function such

that the matching pursuit in a Gabor dictionary commutes with dilations translations and

frequency modulations.

For cyclic groups, we can derive necessary and su�cient conditions for the existence of

a choice function such that G�R = RG� in a complex, �nite dimensional space. Examples

of cyclic groups include unit translations modulo N and unit modulations. The following

theorem shows that with a suitable dictionary we can always obtain translation invariant

decompositions or modulation invariant decompositions.

Proposition 5.4 Let H be a �nite dimensional space. We can construct a choice function

C for which G�R
n
f = R

n
G�f if and only if the dictionary D contains all the eigenvectors

of G� . Moreover, the constructed choice function has an optimality factor of 1 except on

a set of measure 0.
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Proof: Suppose E[f ] = E[G�f ]. We require that RG�f = G�Rf , so from Rf = f� <

f;C(E[f ]) > C(E[f ]) we derive that

< G�f; C(E[G�f ]) > C(E[G�f ]) =< f;C(E[f ]) > G�C(E[f ]); (5:7)

so we have

G�C(E[f ]) = �C(E[f ]): (5:8)

Plugging (5.8) into (5.7) gives j�j2 = 1. Since G� is unitary, setting C(E[f ]) equal to any

eigenvector of G� will satisfy (5.7), and these are the only solutions. Thus, we can satisfy

RG�f = G�Rf if and only if C(E[f ]) is an eigenvector of G� .

Suppose the dictionary D contains all the eigenvectors of G� . We can construct in two

steps a choice function which for almost all f yields a vector g0 such that j< f; g0
> j =

max j< f; g > j for almost all f , and a vector g0 such that j< f; g0
> j � 1p

N
max j<

f; g > j for f in a set of measure 0.

On the set H�K we construct a C1 with optimality factor � = 1 using the method of

proposition 5.2. For f to be in the set K, it must satisfy

�(f) = j < f; g > j = j < f;G��1g > j:

This set K is of measure 0 in H. Thus, we are constructing a choice factor with an

optimality factor of 1 except on a set of measure 0.

On the set K we compute E0[f ] with optimality factor � = 1p
N
. We partition K into

the sets

KK = ff 2 K : E0[f ] = E
0[G�f ] for G� 6= Ig

KH = K�KK :

On KH we construct a choice function C2 using the method of proposition 5.2. On KK

we ensure that the choice function selects an eigenvector of G� . The eigenvectors of G�

are contained in KK and because they form an orthonormal set, we must have at least one

eigenvector w of G� for which j< f;w > j � 1p
N
. Hence all sets E0[f ] for f 2 KK must

contain at least one eigenvector. We construct the equivalence classes of the relation R3

on KK de�ned by f R3 h if and only if E[f ] = E[h]. By the axiom of choice, we can select

an eigenvector w of G� from each equivalence class. The choice function C then associates

to members of each equivalence class the selected eigenvector w.

We now show the only if part. Suppose �rst that H is a complex space and let w be an

eigenvector of G� that does not belong to the dictionary. If f = w we have E[f ] = E[G�f ],

so the only possible values of C(E[f ]) are the other eigenvectors of G� , all of which are

perpendicular to w. Thus the only values of C(E[f ]) which preserve the commutativity do

not satisfy j< f;C(E[f ]) > j � � sup2� j< f; g > j for any � > 0. Hence D must contain

all eigenvalues w of G� .

2
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We cannot extend this result to groups generated by two non-commuting elements,

such as the set of all unit translations and modulations, because non-commuting operators

have di�erent eigenvectors. For general groups when H has a �nite dimension and D is a

�nite dictionary, we set the optimality factor � = 1. Then f 2 K if and only if there exists

g 2 D and G� such that

�(f) = j < f; g > j = j < f;G��1g > j:

This set K is of measure 0 in H. If for all n 2 N R
n
f is not in K, the proof of proposition

5.1 proves that the commutativity relation (5.2) remains valid for f . If the set of such

functions is of measure 0 in H we say that the matching pursuit commutes with operators

in G almost everywhere in H.



Chapter 6

Chaos in Matching Pursuits

Each iteration of a matching pursuit is a solution of anM -optimal approximation problem

where M = 1. Hence the pursuit exhibits some of the same instabilities in its choice of

dictionary vectors as solutions to the M -optimal approximation problem. In this chapter

we study these instabilities and prove that for a particular dictionary the pursuit is chaotic.

6.1 Renormalized Matching Pursuits

We renormalize the residues R
n
f to prevent the convergence of residues to zero so we

can study their asymptotic properties. Let Rn
f be the residue after step n of a matching

pursuit. The renormalized residue ~
R
n
f is

~
R
n
f =

R
n
f

kRn
fk

: (6:1)

The renormalized matching pursuit map is de�ned by

M( ~Rn
f) = ~

R
n+1

f: (6:2)

Since Rn+1
f = R

n
f� < R

n
f; gn > gn and

kRn+1
fk2 = kRn

fk2 � j < R
n
f; gn > j2;

we derive that if j < ~
R
n
f; gn

> j 6= 1

M( ~Rn
f) = ~

R
n+1

f =
~
R
n
f� <

~
R
n
f; gn > gnq

1� j < ~
R
n
f; gn > j2

: (6:3)

We set M( ~Rn
f) = 0 if j < ~

R
n
f; gn

> j = 1.

At each iteration the renormalized matching pursuit map removes the largest dictionary

component of the residue and renormalizes the new residue. This action is much like that

39
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of a binary shift operator acting on a binary decimal: the shift operator removes the most

signi�cant digit of the expansion and then multiplies the decimal by 2, which is analogous

to a renormalization.

De�nition 6.1 Let s 2 [0; 1] be expanded in binary form 0:s1s2s3 . . ., where si 2 f0; 1g.
The binary left-shift map L : [0; 1]! [0; 1] is de�ned by

L(0:s1s2s3 . . .) = 0:s2s3s4 . . . : (6:4)

The binary shift map is well-known to be chaotic with respect to the Lebesgue measure

on [0; 1]. We recall the three conditions that characterize a chaotic map T : � ! � [14]

[10].

1. T must have a sensitive dependence on initial conditions. Let T (k) = T � T � . . . � T ,
k times. There exists � > 0 such that in every neighborhood of x 2 � we can �nd a

point y such that jT (k)(x)� T
(k)(y)j > � for some k � 0.

2. Successive iterations of T must mix the domain. T is said to be topologically transitive

if for every pair of open sets U; V � �, there is a k > 0 for which T
(k)(U)\ V 6= ;.

3. The periodic points of T must be dense in �.

The topological properties of the renormalized matching pursuit map are similar to

those of the left shift map which suggests the possibility of chaotic behavior. The renor-

malized matching pursuit map has \sensitive dependence" on the initial signal f , when f

is near a dictionary element or at the midpoint of a line joining two di�erent dictionary

elements. Let f 2 H and g1
and g2

be two dictionary elements such that

j < f; g1
> j = j < f; g2

> j > j < f; g > j for 1; 2 6=  2 �:

We can change the residue Rf completely by moving f an arbitrarily small distance to-

wards either g1 or g2 . The map thus separates points in particular regions of the space.

Alternatively, consider two signals f1 and f2 de�ned by

f1 = (1� �)g0 + �h1 (6:5)

and

f2 = (1� �)g0 + �h2 (6:6)

where g0 is the closest dictionary element to f1 and f2, jjh1�h2jj = 1, and < h1; g0 >=<

h2; g0 >= 0. Then jjf1�f2jj = �jjh1�h2jj can be made arbitrarily small, while jj ~Rf1� ~
Rf2jj =

jjh1�h2jj = 1. The open ball around g0 is mapped to the entire orthogonal complement of

g0
in the function space, which shows that in some regions of the space, the renormalized

matching pursuit map also shares the domain-mixing properties of chaotic maps.
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6.2 Chaotic Three-Dimensional Matching Pursuit

To prove analytically that a non-linear map is topologically transitive is often extremely

di�cult. We thus concentrate �rst on a simple dictionary of H = R3, where we prove that

the renormalized matching pursuit is topologically equivalent to a shift map. The dictio-

nary D consists of three unit vectors g0; g1; and g2 in R
3 oriented such that < gi; gj >= 1

2

for i 6= j. The vectors form the edges of a regular tetrahedron emerging from a common

vertex; each vector is separated by a 60 degree angle from the other two.

To prove the topological equivalence, we �rst reduce the normalized matching pursuit

to a one-dimensional map. The residue Rn
f is formed by projecting Rn�1

f onto the plane

perpendicular to the selected gn�1
. Hence, the residues Rn

f are all contained in one of

the three planes Pi orthogonal to the vectors gi. We can expand the residue Rn
f 2 Pi over

the orthonormal basis (ei;1; ei;2) of Pi given by

ei;1 = gi+1 � gi�1 (6.7)

ei;2 =
gi+1 + gi�1 � gip

2
: (6.8)

All subscripts above and for the remainder of this section will be taken modulo 3.

Let (xn; yn) be the coordinates of R
n
f in the basis (ei;1; ei;2). Since it is orthogonal to

gi the next dictionary vector that is selected is either gi�1 or gi+1. One can verify that the

residue Rn
f is mapped to a point in Pi�1 if xnyn � 0 and to a point in Pi+1 if xnyn � 0.

The coordinates of the residue Rn+1
f is either is these planes are

Fxy

 
xn

yn

!
=

8>>>><
>>>>:

"
�1

2

p
2
2

�
p
2
2

0

# 
xn

yn

!
xn > 0; yn � 0

or xn < 0; yn � 0"
�1

2 �
p
2
2p

2
2

0

# 
xn

yn

!
xn � 0; yn < 0

or xn � 0; yn > 0

(6:9)

The normalized residue ~
R
n
f has a unit norm and hence lies on a unit circle in one of

the planes Pi. We can thus parameterize this residue by an angle � 2 [��; �) with respect

to the orthogonal basis (ei;1; ei;2). The angle of the next renormalized residue ~
R
n+1

f in

Pi+1 or Pi�1 is F (�) = Arg(Fxy(cos �; sin �)). The graph of F (�) is shown in Figure 6.1. To

simplify the analysis, we identify the three unit circles on the planes Pi to a single circle so

that the map F (�) becomes a map from the unit circle onto itself. The index of the plane

in which a residual vector Rn
f lies can be obtained from the index of the plane Pi in which

Rf lies and the sequence of the angles in the planes of the residues Rf;R2
f; R

3
f; . . ., so

the map encodes the plane Pi containing R
n
f .

F is piecewise strictly monotonically increasing with discontinuities at integer multiples
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Figure 6.1: F (�) on [��; �). The discontinuities occur between quadrants and correspond

to the points at which the element selected by the pursuit changes. The �rst and third

pieces are mapped to Pi+1 and the second and fourth are mapped to Pi�1. The line y = �

is plotted for reference.

of �

2
. Moreover, F possesses the following symmetries which we will use later:

F (�) =

8>>><
>>>:

� + F (� + �) �� � � < ��

2

�F (��) ��

2
� � < 0

F (�) 0 � � <
�

2

� � F (� � �) �

2
� � < �

(6:10)

To analyze the chaotic behavior of this map, we focus on F (2) which is shown in Figure

6.3. The map F (2) partitions [��; �) into four invariant sets I+ = [p1; p2), I� = [�p2;�p1),
J+ = [0; p1) [ [p2; �), and J� = [��;�p2)[ [�p1; 0). Here �p1 and �p2 are the four �xed
points of the map given by p1 = tan�1(

p
2) and p2 = � � tan�1(

p
2).

Proposition 6.1 The restriction of F (2) to each of the invariant regions I� and J� is

topologically conjugate to the binary shift map L and are therefore chaotic. Hence F is

chaotic on the inverse images of I� and J�.

Proof: To prove that F (2) is topologically conjugate to L, we must construct an home-

omorphism h such that

h � F (2) = L � h: (6:11)

This homeomorphism guarantees that F (2) shares the shift map's topological transitivity,

sensitive dependence on initial conditions, and dense periodic points.
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Figure 6.2: The plane Pi. The projections of gi+1 and gi�1 are shown in the �rst and

second quadrants. The darkly and lightly shaded areas are mapped to Pi+1 and Pi�1,

respectively, by the next iteration of the pursuit.

We �rst focus on the region I+. Due to the symmetry, the construction is identical for

I�, and we drop the subscript below. The map F
(2) is di�erentiable over I0 = [p1;

�

2 [ and

I1 = [�
2
; p2). For x in I , we de�ne the index of x by

i(x) =

(
0; x 2 I0

1; x 2 I1
(6:12)

The itinerary of a point x 2 I is the sequence of indices of the images of x under suc-

cessive applications of F (2). Following a standard technique [14], the homeomorphism

h is constructed by assigning to each point x 2 I a binary decimal in [0; 1] with digits

corresponding to the itinerary of x

h(x) = 0 : i(x) i(F (2)(x)) i(F (4)(x)) i(F (6)(x)) . . . (6:13)

The itinerary of F (2)(x) is just the itinerary of x shifted left, so we have

h � F (2)(x) = 0 : i(F (2)(x)) i(F (4)(x)) i(F (6)(x)) . . .

= L � h(x): (6.14)

Thus, (6.11) is satis�ed. The details of the proof that h(x) is a homeomorphism are similar

to [14], x1.7, with one minor di�erence. The fact that h is one-to-one in [14] requires that

(F (2))0 be bounded above one. This is not the case here. However, we can show that
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Figure 6.3: F (2)(�) on [��; �). The discontinuities again correspond to the di�erent se-

lected elements in the two iterations of the pursuit. From left to right in [��; 0), the
pieces correspond to selecting (1) gi+1 followed by gi+2, (2) gi+1 followed by gi, (3) gi�1
followed by gi, (4) gi�1 followed by gi�2, with the cycle repeated in [0; �). The �xed points

correspond to the projections of �gi�1 onto Pi.
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Figure 6.4: F (2)(�) on I .

for � 2 [��; �) (F (4))0(�) � 11
6
> 1: The injectivity of h is then obtained with minor

modi�cations of the original proof.

The proof that F (2) : J� ! J� is a chaotic map is similar to the proof for F (2) : I� !
I�. We consider J+. We �rst modify the metric over our domain so that the points p1
and p2 have a zero distance as well as the points 0 and �. This metric over our domain

is equivalent to a uniform metric over a circle. With this modi�cation, we obtain a map

which is di�erentiable over [0; p1) and [p2; �) and which maps each of these intervals to the

entire domain. The proof now proceeds exactly as above. We note that in the proof that

F
(2) is chaotic on J we de�ne the index function i(x) so that

i(x) =

(
0; x 2 F (I0)

1; x 2 F (I1)
(6:15)

With this construction we obtain a conjugacy between F and the shift map with a home-

omorphism h
0(x) = h(F (x)).

2

The similarities of F (2) and L become much clearer when we compare the graph of F (2)

on I in Figure 6.5 with the graph of the binary shift L on [0; 1), given by y = 2x mod 1.

Both maps are piecewise di�erentiable and monotonically increasing, and both map each

continuous piece onto the entire domain. The slope of the graph of L is strictly greater

than 1, and although the slope of the pieces of F (2) is not everywhere greater than 1, the

slope of the pieces of F (4) is. The itinerary for a point in [0; 1) under L is just its binary
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Figure 6.5: The binary left shift operator L on binary expansions of [0; 1].

decimal expansion, so we see that the homeomorphism we have constructed is a natural

one.



Chapter 7

Invariant Measure

The chaotic properties of matching pursuits make it impossible to predict the exact evo-

lution of the residues, but we can can obtain a statistical description of the properties of

the residues. For an ergodic map, asymptotic statistics can be obtained from the invariant

measure. The residue can then be interpreted as a realization of an equilibrium process

whose distribution is characterized by the invariant measure of the map. The next section

describes the basic properties of these invariant measures and analyzes the particular case

of the three-dimensional dictionary.

In higher dimensional spaces, numerical experiments show that the norm of the residues

kRn
fk decreases quickly for the �rst few iterations, but afterwards the decay rate slows

down and remains approximately constant. The average decay rate can be computed from

the invariant measure and the measurement of this decay rate has applications for the

approximation of signals using a small number of \coherent structures".

Families such as the Gabor dictionary that are invariant under the action of group

operators yield invariant measures with invariant properties as described in chapter 5. To

re�ne our understanding of the invariant measures, we construct an approximate stochas-

tic model of the equilibrium process and provide numerical veri�cations for a dictionary

composed of discrete Dirac and Fourier bases.

7.1 Ergodicity

We �rst summarize some results of ergodic theory [28] [47]. Let � be a measure and let

� be a measurable set with �(�) > 0. Let T be a map from � onto �. T is said to be

measure-preserving if for any measurable set S � � we have

�(S) = �(T�1(S)); (7:1)

where T�1(S) is the inverse image of S under T . The measure � is said to be an invariant

measure under T . A set E is said to be an invariant set under T if T�1E = E. The

47



CHAPTER 7. INVARIANT MEASURE 48

measure preserving map T is ergodic with respect to a measure � if for all invariant sets

E � � we have either �(E) = 0 or �(�� E) = 0.

Ergodicity is a measure-theoretical notion that is related to the topological transitivity

property of chaos [56]. It implies that the map T mixes around the points in its domain.

For example, if T has an ergodic invariant measure � that is non-atomic (every set of

non-zero measure contains a subset of smaller measure), then only for a set of �-measure 0

do the iterates Tx; T 2
x; T

3
x; . . . converge to a cycle of �nite length. Hence, for almost all

x 2 �, Tn
x neither goes to a �xed point or a limit cycle, so for most of � the asymptotic

behavior of Tn
x is complicated.

The binary left shift map on [0,1] is ergodic with respect the Lebesgue measure [38].

We can use the topological conjugacy relation (6.11) we derived in chapter 6 to prove that

the renormalized matching pursuit map F is also ergodic when restricted to one of two

invariant sets. We �rst prove that the map F
(2) of the previous chapter is ergodic.

Lemma 7.1 The restrictions of F (2) to the invariant sets I�; J� are ergodic.

Proof: Let � be one of the sets I�; J�. We �rst show that F (2) is measure-preserving. Let

h be the homeomorphism satisfying

h � F (2) = L � h (7:2)

on �, and let � be the Lebesgue measure. The shift map L preserves the Lebesgue measure,

so we have for any set S 2 [0; 1] that

�(S) = �(L�1S): (7:3)

We de�ne �(S) = �(h(S)), where h(S) = fh(x) : x 2 Sg. This � is a measure because h is

a measurable function. We have

�(S) = �(h(S))

= �(L�1 � h(S))
= �(h � (F (2))�1 � h�1 � h(S))
= �((F (2))�1(S)); (7.4)

so F (2) preserves the measure �.

Suppose that the set S is invariant with respect to F (2), i.e. F (2)(S) = S. From (7.3),

the set h(S) must be invariant under L, and because L is ergodic, either the Lebesgue mea-

sure of h(S) or the Lebesgue measure of ([0; 1]� h(S)) must be zero. By our construction

of �, though, we must then have that �(S) = 0 or �(�� S) = 0. Hence F (2) is ergodic.

2

Proposition 7.1 The three-dimensional renormalized matching pursuit map F is ergodic

when restricted to one of its two invariant sets.
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Proof: The map F is invariant on the sets I�[J+ and J�[I+, and we have F (I�) = J�
and F (J�) = I�. Let � be one of the two invariant sets. To simplify our notation, we will

drop the the subscripts of I and J .

We �rst show that F is measure-preserving. We de�ne �I and �J to be the ergodic

invariant measures on I and J , respectively, which were derived in the above lemma. We

have �I(I) = �J (J) = 1 from our derivation in the lemma. We can decompose any set

S � � into the disjoint union of SI = S \ I and SJ = S \ J . Let �S be the characteristic

function of S. By the Birkho� ergodic theorem,

lim
n!1

1

2n

2n�1X
k=0

�S(F
(k)(x)) = lim

n!1

1

2n

n�1X
k=0

�S(F
(2k)(x)) + �S(F

(2k+1)
x)

=
1

2
[�I(SI) + �I(F

�1(SJ)) + �J (SJ) + �J (F
�1(SI))]

= �(S) (7.5)

for almost all x. � is a measure which is invariant with respect to F due to the invariances

of �I and �J under F (2), and �(�) = 1.

We now show that � is ergodic. Let S is a � measurable set which is invariant under

F , and let �0 be the subset of � of full measure for which the sum in (7.5) converges. We

have �(S) = �(S \ �0). Suppose that �(S \ �0) > 0. Then we must have

�(S \ �0) = lim
n!1

1

2n

2n�1X
k=0

�S\�0(F
(k)(x)) = 1 = �(�): (7:6)

Either �(S) = 0 or �(�� S) = 0, so the result is proved.

2

The ergodicity of a map T allows us to numerically estimate the invariant measure by

counting for points x 2 � how often the iterates Tx; T 2
x; T

3
x; . . . lie in a particular subset

S of �. The Birkho� ergodic theorem [28] states that when �(�) <1,

�(S) = �(�) lim
n!1

1

n

nX
k=1

�S(T
k
x): (7:7)

When an invariant measure � is absolutely continuous with respect to the Lebesgue

measure, by the Radon-Nikodym theorem there exists a function p such that

�(S) =

Z
S

p(x) (7:8)

The function p is called an invariant density. For the invariant measure of F , this density

is given by

p(x) = jh0(x)j
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Figure 7.1: The invariant densities of F for the two invariant sets I� [ J� superimposed

on the interval [��; �). The densities have been obtained by computing the Cesaro sums.

provided that h(x) is absolutely continuous. This invariant density measure can be com-

puted numerically by estimating the limit (7.7) when the density exists. Fig. 7.1 is the

result of numerically computing the Cesaro sums (7.7) for a large set of random values of

x with sets S of the form [a; a+ �a). In this case, the support of the invariant measure of

the normalized matching pursuit is on the three unit circles of the planes Pi. On each of

these circles, the invariant density measures are the same and equal to p(�).

7.2 Coherent Structures

The Cesaro sum (7.7) shows that an ergodic invariant measure reects the distributions

of iterates of the map T . The average number of times the map takes its value in a set is

proportional to the measure of this set. The invariant measure thus provides a statistical

description after a large number of iterations, during which the map may have transient

behavior. For example, for the three-dimensional dictionary of chapter 6, there is one

chance in three that the residue is on the unit circle of any particular plane Pi, and over

this plane the probability that it is located at the angle � is p(�).

In higher dimensional spaces the invariant measure � can be viewed as the distribution

of a stochastic process over the unit sphere S of the space H. After a su�cient number

of iterations, the residue of the map can be considered as a realization of this process.

We call \dictionary noise" the process P corresponding to the invariant ergodic measure
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of the renormalized matching pursuit (if it exists). If the dictionary is invariant under

translations and frequency modulations, we prove in the next section that the dictionary

noise is a stationary white noise. Realizations of a dictionary noise have inner products

that are as small and as uniformly spread across the dictionary vectors as possible. Indeed,

the measure is invariant under the action of the normalized matching pursuit which sets

to zero the largest inner product and makes the appropriate renormalization with (7.16).

Since the statistical properties of a realization x of P are not modi�ed by setting to zero the

largest inner product, the value �(x) of this largest inner product cannot be much larger

the next larger ones. The average value of this maximum inner product for realizations of

this process is by de�nition

�1 =

Z
S
�(x)d�(x) = E[�(P )]:

The ergodicity of the invariant measure implies that

�1 = lim
n!1

1

n

nX
k=1

�(Rk
fx): (7:9)

We recall from (3.12) that if the optimality factor � = 1 we have

kRn+1
fk = kRn

fk
q
1� �

2(Rn
f): (7:10)

The average decay rate is thus

d1 = lim
n!1

log kfk � log kRn�1
fk

n

= lim
n!1

1

n

n�1X
k=0

�1
2

log (1� �
2( ~Rk

f )): (7:11)

The ergodicity of the renormalized map implies that this average decay rate is

d1 = �
1

2

Z
S
log (1� �

2(x))d�(x) = �
1

2
E[log (1� �

2(P ))]: (7:12)

Since �(x) � �min,

d1 � �
1

2
log(1� �

2
min

);

but numerical experiments show that there is often not a large factor between these two

values.

The decay rate of the norms of the residues R
n
f was studied numerically in [58].

The numerical experiments show that when the original vector f correlates well with a

few dictionary vectors, the �rst iterations of the matching pursuit remove these highly

correlated components, called coherent structures. Afterwards, the average decay rate

decreases quickly to d1.

The chaotic behavior of the matching pursuit map that we have derived provides a

theoretical explanation for this behavior of the decay rate. As the coherent structures are



CHAPTER 7. INVARIANT MEASURE 52

removed, the energy of the residue becomes spread out over many dictionary vectors, as

it is for realizations of the dictionary noise P , and the decay rate of the residue becomes

small and on average equal to d1. The convergence of the average decay rate to d1 can be

interpreted as the the residues of an ergodic map converging to the support of the invariant

measure.

We emphasize that our notion of coherence here is entirely dependent upon the dic-

tionary in question. A residue which is considered dictionary noise with respect to one

dictionary may contain many coherent structures with respect to another dictionary. For

example, a sinusoidal wave has no coherent components in a dictionary composed of Diracs

but is clearly very coherent in a dictionary of complex exponentials.

For many signal processing applications, the dictionary de�nes a set of structures which

we wish to isolate. We truncate signal expansions after most of the coherent structures

have been removed because the dictionary noise which remains does not resemble the

features we are looking for, and because the convergence of the approximations is slow for

the dictionary noise. Expansions into coherent structures allow us to compress much of

the signal energy into a few elements.

As long as a signal f contains coherent structures, the sequence �(Rn
f) has di�er-

ent properties than realizations of the random variable �(P ), where P is the dictionary

noise process. A simple procedure to decide when the coherent structures have mostly

disappeared by iteration n is to test whether a running average of the �(Rk
f)'s satisfy

1

d

n+dX
k=n

�(Rk
f) � �1(1 + �); (7:13)

where d is a smoothing parameter and � is a con�dence parameter that are adjusted

depending upon the variance of �(P ).

Numerical experiments indicate that the normalized matching pursuit with a Gabor

dictionary does have an ergodic invariant measure. After a number of iterations, the

residues behave like realizations of a stationary white noise. The next section shows why

this occurs. In our discrete implementation of this dictionary, where the scale is discretized

in powers of 2 and H = RN where N = 8192, we measured numerically that �1 � 0:043 =
3:9p
8192

. Fig. 7.3 displays �(Rn
f) as a function of the number of iterations n for a noisy

recording of the word \wavelets" shown in Fig. 7.2. We see that the Cesaro average of

�(Rn
f) is converging to �1. The time-frequency energy distribution Ef(t; !) of the �rst

n = 200 coherent structures is shown in Fig. 7.6. Fig. 7.5 is the signal reconstructed from

these coherent structures whereas Fig. 7.7 shows the approximation error Rn
f . The signal

recovered from the coherent structures has an excellent sound quality despite the fact that

it was approximated by many fewer elements than the number of samples.

When we use the Gabor dictionary, the coherent structures of a signal are those por-

tions of a signal which are well-localized in the time-frequency plane. White noise is not

e�ciently represented in this dictionary because its energy is spread uniformly over the

entire dictionary, much like the realizations of the dictionary noise. We analyze expansions
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Figure 7.2: Digitized recording of a female speaker pronouncing the word \wavelets" to

which white noise has been added. Sampling is at 11 KHz, and the signal to noise ratio is

10dB.

of realizations of a white noise process in detail in section 7.5. Speech contains many struc-

tures which are well-localized in the time-frequency plane, especially in voiced segments of

speech, so speech signals are e�ciently represented by the Gabor dictionary. The coherent

portion of a noisy speech signal, therefore, will be a much better approximation to the

speech than to the noise. As a result, the coherent reconstruction of the \wavelet" signal

has a 14.9 dB signal to noise ratio whereas the original signal had only a 10.0 dB SNR.

Moreover, the coherent reconstruction is audibly less noisy than the original signal.

[58] proposes a denoising procedure based upon the fact that white noise is poorly

represented in the Gabor dictionary, which was inspired by numerical experiments with

the decay of the residues. Similar ideas exist in [51] [18], namely, to separate \noise" from a

signal, we approximate a signal using a scheme which e�ciently approximates the portion

of interest but ine�ciently approximates the noise. In order to implement a denoising

scheme with a matching pursuit, it is essential that the dictionary be well-adapted to

decomposing that portion of signals we wish to retain and poorly-adapted to decomposing

that portion we wish to discard. In chapter 8 we describe an algorithm for optimizing

a dictionary so that we can maximize the coherence of signals of interest. Furthermore,

the analysis of this chapter can be used to characterize the types of signals that a given

dictionary is ine�cient for representing, the realizations of a dictionary noise, so that we

can determine what types of \noise" we can remove from signals.
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Figure 7.3: �(Rn
f) and the Cesaro sum 1

n

P
n

k=1 �(R
k
f) as a function of n for the \wavelets"

signal with a dictionary of discrete Gabor functions. The top curve is the Cesaro sum,

the middle curve is �(Rn
f), and the dashed line is �1. We see that both �(Rn

f) and the

Cesaro sum converge to �1 as n increases.
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Figure 7.4: The time-frequency energy distribution of the speech recording shown in Fig.

7.2. The initial cluster which contains the low-frequency \w" and the harmonics of the

long \a". The second cluster is the \le". The �nal portion of the signal is the \s", which

resembles a band-limited noise. The faint horizontal and vertical bars scattered across the

time-frequency plane are components of the Gaussian white noise which was added to the

speech signal.
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Figure 7.5: The \wavelets" signal reconstructed from the 200 coherent structures. The

number of coherent structures was determined by setting d = 5 and � = 0:02:

Figure 7.6: The time-frequency energy distribution of the 200 coherent structures of the

speech recording shown in Fig. 7.2.
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Figure 7.7: The residual R200
f of the \wavelets" signal shown in Fig. 7.2.

7.3 Invariant Measure of Group Invariant Dictionaries

The Gabor dictionary is a particular example of a dictionary that is invariant under the

action of group operators G = fG�g�2
. We proved in chapter 5 that with an appropriate

choice function the resulting matching pursuit commutes with the corresponding group

operators. If the matching pursuit commutes with G� , the renormalized matching pursuit

map also satis�es the commutativity property

M(G�
~
R
n
f) = G�M( ~Rn

f): (7:14)

The following proposition studies a consequence of this commutativity for the invariant

measure, in a �nite dimensional space.

Proposition 7.2 Let M be an ergodic matching pursuit map with an invariant measure

� de�ned on the unit sphere S with �(S) < +1. If there exists a set of f 2 S of non-zero

�-measure such that (7.14) is satis�ed for all n 2 N, then for any G� 2 G and U 2 S

�(G�U) = �(U):

Proof: This result is a simple consequence of the Birkho� ergodic theorem. Indeed for

any U � � and almost any f 2 S whose residues satisfy (7.14)

�(U) = �(S) lim
n!1

1

n

nX
k=1

�U (M
k
f): (7:15)
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Hence

�(G�U) = �(S) lim
n!1

1

n

nX
k=1

�G�U
(Mk

f):

Since Mk
G��1f = G��1M

k
f

�G�U
(Mk

f) = �U (M
k
G��1f):

But since the limit (7.15) is independent of f for almost all f , we derive that �(G�U) =

�(U).

2

This result trivially applies to the invariant measure of the three dimensional dictionary

studied in chapter 6. Since the three vectors fg1; g2; g3g have equal angles of 60 degrees

between themselves, this dictionary is invariant under the action of the rotation group

composed of fI; G;G2g where I is the identity and G the rotation operator that maps gi
to gi+1 where the index i is taken modulo 3. This implies that the invariant measure of

the normalized matching pursuit is invariant with respect to G. It thus admits the same

invariant measure over the unit circle in each plane Pi.

A more interesting application of this result concerns dictionaries that are invariant

by translation and frequency modulation groups. Let H = RN and f�ng0�n<N be the

canonical (or Dirac) basis. The translation group is composed of fT kg0�k<N where T is

the elementary translation modulo N

T�n = �
(n+1) mod N

:

The modulation group is composed of fF kg0�k<N where F is the frequency modulation

operator de�ned by

F�n = e
i
2�n
N �n:

Suppose that the matching pursuit is an ergodic map which admits an invariant measure

and that it is implemented with a choice function that commutes almost everywhere with

the translation and frequency modulation group operators. Proposition 5.1 proves that

the invariant measure ofM is also invariant with respect to translations T k and frequency

modulations F
k . The invariance with respect to translations means that the discrete

process associated to this measure is stationary (modulo N). The invariance with respect

to frequency modulation operators F k implies that the discrete power spectrum of this

process (the discrete Fourier transform of the N point autocorrelation vector) is constant.

In other words, the process is a white stationary noise.

A simple example of a translation and frequency modulation invariant dictionary is

constructed by aggregating the canonical basis ofN discrete Diracs and the discrete Fourier

orthonormal basis

D = f�n; eng0�n<N = fgg2�;
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where en is the discrete complex exponential

en =
N�1X
k=0

e

i2�nk
N �k:

In the next section we construct a stochastic model of the matching pursuit invariant

measure obtained with this dictionary.

7.4 An Invariant Measure Model

This section describes an approximate invariant measure model that we apply to the dis-

crete Dirac-Fourier dictionary. The model is veri�ed numerically at the end of the section.

Let gn be the dictionary element selected on iteration n. The normalized matching pursuit

map is de�ned by

~
R
n+1

f =
~
R
n
f� <

~
R
n
f; gn > gnq

1� j< ~
R
n
f; gn > j2

: (7:16)

To �nd the invariant measure we consider the matching pursuit mapping of a stochastic

process Pn

P
n+1 =M(Pn) =

P
n� < P

n
; gPn > gPnp

1� j< P
n
; gPn > j2

; (7:17)

where gPn is a random vector that takes its values over the dictionary D and satis�es

j< P
n
; gPn > j = sup

2�
j< P

n
; g > j: (7:18)

The invariant measure of the map corresponds to an equilibrium state in which P
n+1 has

the same distribution as Pn. For any  2 �,

< P
n+1

; g > =
< P

n
; g >p

1� j< P; gPn > j2
�
< P

n
; gPn >< gPn ; g >p

1� j< P
n
; gPn > j2

: (7:19)

We recall that

�(Pn) = j< P
n
; gPn > j: (7:20)

We suppose that in equilibrium the random variable �(Pn) is constant and equal to its

mean, �1. This is equivalent to supposing that the standard deviation of �(P ) is small with

respect to the mean, which is indeed veri�ed numerically with several large dimensional

dictionaries.

The behavior of < P
n
; gPn >< gPn ; g > can be divided into three cases. If gPn = g ,

then < P
n+1

; g >= 0. If < g ; gPn >= 0 then (7.19) reduces to

< P
n+1

; g > =
< P

n
; g >p

1� �
2
1

: (7:21)
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Otherwise, we decompose

gPn =< gPn ; P
n
> P

n+ < gPn ; Q
n
> Q

n
:

Since P
n is a process whose realizations are on the unit sphere of H, this is equivalent

to an orthogonal projection onto a unit norm vector Pn plus the projection Q
n onto the

orthogonal complement of Pn. We thus obtain

< gPn ; g >=< gPn ; P
n
>< P

n
; g > + < gPn ; Q

n
>< Q

n
; g > : (7:22)

Inserting this equation into (7.19) yields

< P
n+1

; g > = < P
n
; g >

q
1� j< gPn ; P

n
> j2 +A

n


; (7:23)

with

A
n

 = �
< P

n
; gPn >< gPn ; Q

n
>< Q

n
; g >p

1� j< P
n
; gPn > j2

:

We have from (7.22) that

jAn

 j =
�1j< gPn ; g > � < gPn ; P

n
>< P

n
; g > jp

1� �
2
1

: (7:24)

If �1
2 � j< g ; gPn > j2, then because

j< P
n
; g > j � j< P

n
; gPn > j � �1;

we have to a �rst approximation that

jAn

 j =
�1j< gPn ; g > jp

1� �
2
1

: (7:25)

Equation (7.19) is then reduced to

< P
n+1

; g > = < P
n
; g >

q
1� �

2
1 +

�1j< gPn ; g > jei�
n
p

1� �
2
1

; (7:26)

where �n

is the complex phase of An


. The three possible new cases for the evolution of

< P
n
; g > are summarized by

< P
n+1

; g >=

8>>><
>>>:

<P
n
;g>p

1��12
; if < g ; gPn >= 0;q

1� �1
2
< P

n
; g > +�1j<g ;gPn>je

i�
n
p

1��12
; if �21 � j< g ; gPn > j

0; if g = gPn :

(7:27)
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The Dirac-Fourier dictionary is an example of dictionary for which all these simpli�-

cation assumptions are valid. We observe numerically that in the equilibrium state for a

space of dimension N , �1 is of the order of 1p
N
whereas the standard deviation of �(P ) is

of the order of 1
N
, which justi�es approximating �(P ) by its mean �1. Moreover, for any

distinct g and gPn in this dictionary, either both vectors are in the same basis (Dirac or

Fourier) and

< g ; gPn >= 0;

or both vectors are in di�erent bases and

�
2
1 � j< g ; gPn > j =

1
p
N

:

So one of the approximations of (7.27) always applies. Because of the symmetrical positions

of the Dirac and the Fourier dictionary vectors, there is an equal probability that gPn

belongs to the Dirac or Fourier basis. For any �xed g , the �rst two updating equations

of (7.27) thus apply with equal frequency. We derive an average updating equation which

incorporates both equations for gPn 6= g ,

< P
n+2

; g > � < P
n
; g >=

�1e
i�
n


p
N

: (7:28)

For n and  �xed, ei�
n
 is a complex random variable and the symmetry of the dictionary

implies that its real and imaginary parts have the same distributions with a zero mean.

For any �xed , we also suppose that at equilibrium the phase random variables �n are

independent as a function of n. The di�erence < P
n+2K

f; g > � < P
n
; g > is thus the

sum of K independent, identically distributed complex random variables of variance 1. By

the central limit theorem, the distribution of 1
2K

(< P
n+2K

f; g > � < P
n
; g >) tends to

a complex Gaussian random variable of variance 1. The inner products < P
n
; g > thus

follow a complex random walk as long as g 6= gPn . The last case gPn = g of (7.27) occurs

when < P
n
; g > is the largest inner product whose amplitude we know to be

j< P
n
; gPn > j = �(P ) = �1:

At equilibrium, the distribution of < P
n
; g > is that of a random walk with an absorbing

boundary at �1.

To �nd an explicit expression for the distribution of the resulting process, we approxi-

mate the di�erence equation with a continuous time Langevin di�erential equation

d

dt

< P
t
; g >=

�1

2
p
N

�(t); (7:29)

where �(t) is a complex Weiner process with mean 0 and variance 1. The corresponding

Fokker-Planck equation [22] describes the evolution of the probability distribution p(z; t)
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of z =< P
t
; g >. Since the real and complex parts of �(t) have same variance, the solution

can be written p(z; t) = p(r; t) where r = jzj and

@p(r; t)

@t

=
�1

2

8N
4p(r; t) (7:30)

which reduces to

4p(r) = 0 (7:31)

at equilibrium. The general solution to (7.31) with a singularity at r = 0 is

p(r) = C ln(r) +D:

The constants C and D are obtained from boundary conditions.

The inner products < P
n
; g > start at r = 0 and di�use outward until they reach

r = �1, at which time gPn = g , and < P
n
; g > returns to 0. The Langevin equation

(7.29) describes the evolution of the inner products before selection; the selection process

is modeled by the boundary conditions.

We can write (7.30) in the form of a local conservation equation,

@p(r; t)

@t

+
@J(r; t)

@r

= 0; (7:32)

where J , the probability current, is given by

J =
��12

8N
rp: (7:33)

The aggregate evolution of the inner products is described by a net probability current

which ows outward from a source at the origin and which is removed by a sink at r = �1.

At each time step, exactly one of the 2N dictionary elements is selected and set to 0. Thus,

the strength of both the sink and the source is 1
2N

and thus implies that

lim
r!0

I
jzj=r

J � n̂ d` =
1

2N
(7:34)

I
jzj=�1

J � n̂ d` =
1

2N
(7:35)

Integrating (7.31) we �nd that rpr(r) = C. By performing the line integrals in (7.34)

and (7.35), we �nd that C = �2
��1

2 . Thus, we have

p(r) =
�2
��1

2
ln(r) +D: (7:36)

We use additional constraints to �nd D and �1. Since all inner products lie in jrj < �1,

we must have Z
jzj<�1

p(z)dz = 1: (7:37)
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Since the dictionary includes two orthonormal bases and kP tk = 1, we haveX
2�

j< P
t
; g > j2 = 2:

The 2N inner products < P
t
; g > with dictionary elements correspond to particles of 2N

di�erent ages (where a particle's age is the time since it was last set to zero). We thus

assume the mean ergodic property

Ej< P
t
; g > j2 =

1

2N

X
2�

j< P
t
; g > j2 =

1

N

and hence Z
jzj<�1

z
2
p(z)dz =

1

N

: (7:38)

Inserting conditions (7.37) and (7.38) into (7.36) yields

�1 =
2
p
N

and D =
2 ln�1

��1
2
:

Hence

p(r) =
2

��1
2
ln(

�1

r

): (7:39)

Figure 7.8 compares the graph of (7.39) for N = 4096 with an empirically determined

density function. The empirical density function was obtained by computing the Cesaro

sums 1
n

P
n

k=0 < R
k
f; g > where g is a Dirac element and f is a realization of a white

noise. The �rst N terms were discarded to eliminate transient behavior and to speed the

convergence of the sum. We have aggregated the Cesaro sums for the members of the Dirac

basis to obtain higher resolution. The invariant density function is invariant by transla-

tion due to the translation invariance of the decomposition, so this aggregation does not

a�ect our measurements. The �gure shows an excellent agreement between the model and

measured values. Figure 7.9 compares predicted values of �1 with empirically determined

values. The discrepancy near the origin is due to the fact that the approximation of the

of the complex exponential term in (7.28) with a Gaussian is not valid for the �rst few

iterations after < P
n
; g > is set to 0. These results justify a posteriori the validity our

approximation hypotheses.

For this dictionary the average value �1 is only twice as large as the minimum �min.

The value �min is attained for the linear chirp

f =
N�1X
k=0

e

i2�k2

N �k;

where

�min = �(f) =
1
p
N

:
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Figure 7.8: A cross section of the function p(r; �) along the � = 0 axis. The solid curve

is determined empirically by computing the Cesaro sums. The dashed curve is a graph

of the predicted density from our model. The discrepancy near the origin is due to the

approximation of the of the complex exponential term in our model with a Gaussian.
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Figure 7.9: Measured versus predicted values of �1 for the Dirac-Fourier dictionary as

a function of the dimension N of the space H. The circles correspond to empirically

determined values of �1.
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The average value of �1 for this equilibrium process is much smaller than the value
q

logN
N

which would be obtained from a white stationary Gaussian noise. This shows that the

realizations of the dictionary noise have energy that is truly well spread over the dictionary

elements.

7.5 Asymptotic Evolution of the Residues

Our experiments have shown that residues converge to dictionary noise, and we have

characterised this \noise" with a density function derived from a stochastic di�erential

equation model. In this section we modify our stochastic model to obtain information

about the time-evolution of the residues close to the attractor. We show that this modi�ed

model successfully predicts the macroscopic behavior of the residues for realizations of a

Gaussian white noise process.

Our model for the evolution of residues on the attractor in the previous section required

two basic assumptions.

1. The correlation ratio on iteration n, �n, is approximately equal to a constant.

We drop this assumption in order to gain information on the convergence to the

attractor.

2. The di�usion term A
n

 in equation (7.23) can be approximated by a random variable

with a known magnitude and uniformly distributed random phase which is indepen-

dent of n.

This approximation requires �rst that �1 � j< g; gPn > j so that we can deter-

mine the magnitude of An

 with some degree of accuracy. When �1 is su�ciently

small, the phase of An
 is predominantly determined by the phase of < gPn ; g >.

The assumption that this phase is independent of n and uniformly distributed is

tantamount to assuming that the energy of the residue is uniformly spread out over

the dictionary and that the dictionary elements which are selected do not have any

particular correlation that would bias the phase.

We will construct a stochastic di�erential equation model which predicts the evolution

of residues which are close to the attractor in the sense that the energy of the residues is

well spread out over the dictionary and the coe�cients of the selected dictionary vectors

do not have strongly correlated phases. We verify the model numerically for a Gaussian

white noise, a process which satis�es the above assumptions.

Let P be a stochastic process such that realizations of P have energy uniformly dis-

tributed over the dictionary. We follow the derivation of the model of the previous section

with one major change. When we are away from the attractor the correlation ratio �n is

no longer constant. We replace the constant �1 in our derivation with the variable �n. In

order to make an approximation of the term A
n

 of equation (7.23) similar to that of the

previous section, we require that �n � j< g ; gPn > j. Our approximation of the phase of
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A
n


by a uniformly distributed random phase ei�

n
 is justi�ed by our assumption that the

selected dictionary elements do not have a correlated structure. We thus obtain

< P
n+1

; g >=

8>>><
>>>:

<P
n
;g>p

1��n2
; if < g ; gPn >= 0;q

1� �n
2
< P

n
; g > +

�nj<g ;gPn>je
i�
n
p

1��n2
; if �n

2 � j< g ; gPn > j

0; if g = gPn :

(7:40)

One example for which all our assumptions hold is the Dirac-Fourier dictionary in an

N -dimensional Euclidean space with P equal to a Gaussian white noise process. When

j< g ; gPn > j is 0 or 1, the update to < P
n
; g > is exact; otherwise, we know that the

energy of the white noise process is uniformly spread over the dictionary vectors, and �
2
n

is O( logN
N

) which is much smaller than j< g ; gPn > j = 1p
N
, so our approximations are

reasonable.

Because we assume that the energy of the residue is uniformly spread over the dictionary

we can again make use of the symmetrical positions of the Dirac and Fourier basis vectors.

There is an equal probability that the selected vector gPn belongs to the Dirac or to the

Fourier basis. For a �xed g , the �rst and second updating equations apply with equal

frequency, so we average these equations to obtain for g 6= gPn that

< P
n+2

; g > � < P
n
; g >=

�ne
i�n

p
N

: (7:41)

The energy of the residue is spread over the dictionary elements, so the value of the

largest inner product j< P
n
; gPn > j will not be much greater than the value of the next

largest inner product. Moreover, �n is not large, so the removal of the element gPn from

P
n will not have a large e�ect on the inner products j < P

n
; g > j. Hence, the value

�n does not change rapidly. When K is not too large we can approximate the variables

�n; �n+1; . . . ; �n+2K with their mean, �n. By the central limit theorem the di�erence
1
2K (< P

n+2K
; g > � < P

n
; g >) � �n

2K
p
N

P
n+2K
k=n e

i�
k
 tends to a complex Gaussian

random variable with variance 1. An important e�ect of approximating the complex expo-

nential ei�
n
 with a Gaussian will be that the model's evolution will be smoother than that

of the actual system since we are replacing the exponential term with its running average.

The evolution of the system is thus described by a random walk with a varying step

size and a moving absorbing boundary at �n. We approximate the di�erence equation with

a continuous time Langevin equation to obtain an explicit solution.

d

dt

< P
t
; g >=

�(t)

2
p
N

�(t); (7:42)

where �(t) is a complex Weiner process with mean 0 and variance 1. The corresponding

Fokker-Planck equation [22] describes the evolution of the probability distribution p(z; t)
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of z =< P
t
; g >. Since the real and complex parts of �(t) have same variance, the solution

can be written p(z; t) = p(r; t) where r = jzj and

@p(r; t)

@t

=
�(t)2

8N
4p(r; t): (7:43)

As in the equilibrium case, the boundary condition at 0 will be given by

lim
r!0

I
jzj=r

J � n̂ d` =
1

2N
; (7:44)

where the probability current J = ��(t)2

8N
rp. The ow of probability across the boundary

at �(t) is driven both by the current and by the motion of the boundary. The ux across

jzj = �(t) will be 1
2N

, because we are setting exactly one of the 2N inner products to zero

each time step. We obtain a relationship between the current at the boundary and the

location of the boundary, �(t), using the constraint that the total probability is conserved.

We have,
d

dt

Z 2�

0

Z
�(t)

0
p(r; t)rdrd� = 0; (7:45)

from which we obtain,

�
0(t) =

J(�(t); t)� 1
4N��(t)

p(�(t); t)
: (7.46)

We see from 7.43 that the evolution of the probability density function is governed by

a heat equation with boundary conditions on moving boundaries. We can think of these

equations as governing the depth of a uid in a cylindrical chamber. On the left end of the

chamber there is a small opening and on the right a piston containing an identical opening.

The chamber is initially �lled with uid with depth distributed according to p(r; 0). The

variations in the depth spread out via di�usion. Fluid is pumped into the chamber from

the hole on the left at a rate 1
4N��(t)

, and it ows out at an equal rate on the right through

the hole in the piston. If the di�usion-induced current at the right edge of the chamber is

larger than 1
4N��(t)

, the excess current forces the piston outward. If the induced current

is smaller than 1
4N��(t)

, the piston moves inwards to generate additional current. In our

numerical experiments the initial wave dies down, and the system evolves to a state of

constant ow.

We solve the coupled equations (7.43) and (7.46) using a center-space, forward time

�nite di�erence method for p(r; t). The value of �(t) is computed by enforcing the conser-

vation of
R �(t)
0 p(r; t)rdr. Although the solutions are singular at the origin, our grid values

remain bounded because we use a conservation scheme and the integral of this singular-

ity is bounded. We take �(0) to be Ej< P; g > j, which we estimate numerically, and

we set p(r; 0) equal to a complex Gaussian of mean 0 and variance 1
2N

truncated at r =

Ej< P; g > j and normalized so that its integral is 1.
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Figure 7.10: The decay of � as a function of n for a Gaussian white noise with the

Dirac-Fourier dictionary. The solid curve is a set of �(t)'s obtained from a pursuit, and

the dashed curve is a solution �(t) of our model.
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Figure 7.10 shows the solution �(t) we obtain for N = 8192 together with the values of

�n obtained from a matching pursuit with a realization of a Gaussian white noise process.

Comparing numerical solutions of (7.43) to pursuits with noise, we �nd that the model

provides a good explananation of the macroscopic behavior of �n. The measured �n has

greater variability for several reasons. First, in replacing the ei�
n
 term with a Gaussian in

our model, we are e�ectively smooth the evolution. Also, the distribution of the discrete

set of inner products < ~
R
n
f; g > only approximates the smooth density function p(r; t),

especially in the tail which determines �(t).

The behavior of the system is consistent with our analysis of section 7.2. The tail of

the initial Gaussian represents the part of the signal which is coherent. In the tail of the

initial Gaussian both p(r; t) and its slope are close to 0 so �(t) initially decreases very

quickly. This corresponds to the small number of random coherent structures present in

the white noise being removed. As t increases, the ow from the source starts to pile up

at the origin (the number of elements which have small inner product with the residue

increases), and the decay of �(t) slows due to the increase in p(�(t)) and the decrease in

[��
2(t)

8N
pr(�(t); t)� 1

4N��(t)
]. This corresponds to the energy of the residue spreading out

across all of the dictionary elements. The entire system evolves to an asymptotic steady

state, which corresponds to the invariant density.



Chapter 8

Learning Optimal Dictionaries

Many types of data, such as recorded speech signals [44], can be modeled as realizations of a

random process. We now consider the problem of optimizing a dictionary for decomposing

the realizations of a particular random process. Our criterion for optimality is that we

minimize the expected error of the M -element expansions,

Ekf �
M�1X
k=0

�kgk
k2; (8:1)

for some �xed M , where f is a realization of our process. We will perform this min-

imization over a class of dictionaries which is parametrized by a �nite parameter set

a = (a1; a2; . . . ; aK). This is a very general class; for instance, any �nite dictionary in

a �nite dimensional space can be represented as such a dictionary. For our numerical ex-

periments, we will optimize a subset of the Gabor dictionary which is parametrized by a

single scale.

This type of optimization is particularly important when we work with dictionaries

which are characterized by a large number of parameters. For example, [48] [1] expands

speech signals into sums of formant-wave functions, a set of waveforms which model the

partial response of the vocal tract to a single excitation produced by the vocal cords. The

expansion of speech data into sums of these functions allows the extraction of important

psychoacoustical parameters such as pitch and the positions of formants. Formant-wave

functions are are characterized by translation, modulation, attack rate, and decay rate

parameters. If the signal is initially de�ned over N points, the corresponding dictionary

with uniformly sampled parameters contains O(N4) elements, which is extremely large for

speech signals where N is of the order of 10; 000 samples. We need to subsample this

dictionary to reduce the computational complexity of the decomposition, but we want to

do so in such a way that we have minimal increase in our error. In this section we describe

an algorithm for iteratively optimizing an initial set of dictionary parameters which is

based on the Lloyd algorithm, an algorithm used for optimizing vector quantizers. For

the speech example above, we can parametrize our subsampling and then optimize these

71
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subsampling parameters for speech data.

8.1 Vector Quantization and the Lloyd Algorithm

The problem of vector quantization is similar to our problem of compact function rep-

resentation. Let X be a vector space and let B be a set fbig. The set B is called the

code book, and its elements are called code words. For typical vector quantization appli-

cations the cardinality of B is much smaller than that of X . Vector quantization is a

two-stage process. Each x 2 X is mapped to one of the code words by an encoder, a

function C : X! B. The encoded x is an intermediate representation which can be used

for compact storage or transmission. We convert this code word back to a vector in X

with a decoder, a function D : B! X. We would like to minimize the distortion incurred

through this encoding/decoding process for realizations of a random process, i.e. we seek

to minimize the expected quantization error

EkD(C(x))� xk2 = Ek~x� xk2; (8:2)

where x is a realization of the process and ~x is the quantized value of x.

8.1.1 Conditions for Optimality

We assume that our quantizer is memoryless, i.e. that it makes no use of information about

what it has encoded in the past. For such a quantizer to be optimal, in the sense that it

minimizes (8.2), we have two necessary conditions:

1. Nearest Neighbor Condition. Suppose we are given a decoder D such thatD(bi) = ~xi.

Then no encoder can do better than to assign to x the code word bi which minimizes

kx�D(bi)k. Equivalently, we quantize to ~xi the set of all x for which

kx� ~xik < kx� ~xjk; i 6= j: (8:3)

The sets Vi = fx : kx � ~xik < kx � ~xjk; i 6= jg are called the Voronoi regions, or

nearest neighbor cells, of the decoder values ~xi. The encoder partitions the space X

according to the code words assigned to each x 2 X. These code-word partitions are

given by the sets Bi = fx : C(x) = big. The encoder is optimal when the encoder

partition Bi for each code word bi is equal to the Voronoi region of the corresponding

decoder value ~xi.

2. Generalized Centroid Condition. Suppose we are given an encoder C. No decoder

can do better than to assign to the code word bi the generalized centroid of the

set Bi. The generalized centroid of B is de�ned to be the yi 2 X which minimizes

Ex2Bikyi � xk2. The decoder which assigns yi to bi, i.e. D(bi) = ~xi = yi, is thus

optimal.
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A quantizer is uniquely characterized by the partition fBig ofX and the set of outputs

f~xig of the decoder. Given a set f~xig, the nearest neighbor condition tells us how to

generate an optimal set fBig. Given fBig, the generalized centroid condition tells us how

to generate an optimal set f~xig.

8.1.2 The Lloyd Algorithm

The Lloyd algorithm proceeds by iterating the following steps on an arbitrary quantizer,

ffBig; f~xigg.

1. Using the initial decoder, we optimize the encoder according to the nearest neighbor

condition. We use the given f~xig to generate an optimal partition fB0
i
g of X.

2. Using the encoder from the �rst step, we optimize the decoder according to the

generalized centroid condition. We use the optimized partition fB0
i
g to generate an

optimal set of decoder values f~x0
i
g.

3. We repeat steps 1 and 2 using the quantizer ffB0
i
g; f~x0

i
gg.

Each step either decreases or leaves unchanged the expected error (8.2). The error is

nonincreasing and bounded below by 0, so the algorithm produces a sequence of quantizers

whose average errors decrease to some lower limit.

Satisfying both the conditions for optimality does not guarantee that a given quantizer

is globally optimal, i.e. that there is no other quantizer which gives a lower average

error. The average error is a functino on the very high dimensional domain consisting

of the vectors associated with the code words, and this error function is in general quite

complicated, possessing numerous local extrema. A quantizer with discrete inputs and a

�nite training set that satis�es the conditions for optimality can be shown to be locally

optimal in the sense that small perturbations of the code vectors make the average error

worse [27].

8.2 The Lloyd Algorithm for Multistage Quantizers

8.2.1 Optimal Multistage Encoders

We can apply this encoder/decoder framework to dictionary expansions. We take for our

dictionary D = fg(a)g2�, where a is a set of K parameters. Our goal is to modify these

parameters to improve function approximations. Consider the M -element expansion of f

into f =
P

M�1
k=0 �kgk

(a) + R
M
f . This expansion can be viewed as a quantization of f ,

where a code word consists of the M coe�cients �k and the M indices k.

The function f is encoded to the pair (G;B), where B = (�0; . . . ; �M�1) and G =

(0; . . .M�1). In this chapter we work with encoders for which the coe�cients B can be

written explicitly in terms of the function f and the coe�cients G. For example, with an
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orthogonal pursuit, the coe�cients B are given by the orthogonal projection of f onto the

subspace spanned by fgg2G. For simplicity, then, we will describe functions as being

encoded to the set of indices G.
The decoder assigns to the code word G the sum

D(f;G; a) =
X
2G

�g(a): (8:4)

Unless we specify otherwise, we assume that the values � in (8.4) are the optimal values

obtained by projecting f onto the span of fgg2G.
The quantization error is RM

f . Our goal is to minimize the expected norm of this

quantization error when f is the realization of some random process. The parameter set a

completely speci�es the decoder in the above decoding process, so we can use the conditions

for optimality de�ned above to �nd an optimal encoder corresponding to the decoder with

a particular parameter set a. To satisfy condition (8.3) for our expansion, we must encode

every f to a set of indices G which satis�es

kf �D(f;G; a)k � kf �D(f;G0; a)k: (8:5)

Thus, the notion of an optimal encoder for an multi-stage vector quantization is identical to

our M -optimal approximation problem, so obtaining an optimal encoding for a particular

parameter set a requires that we solve the NP-hard optimal approximation problem.

8.2.2 Optimal Multistage Decoders

Suppose that we have an optimal encoder for a given dictionary. We can use this encoder

to �nd an improved decoder using a variation on our above condition for optimality. The

optimal encoder partitions the functions in the signal space H according to the G's to which
they are encoded. Let BG be the set of all functions f 2 H which are encoded to the set of

indices G. For the decoder to be optimal for this encoding, it must assign to each partition

BG its generalized centroid, the value ~
fG which minimizes Ef2BGkf � ~

fGk2. We cannot in

general satisfy this optimality condition. When the dictionary is in�nite, we must compute

the centroids of an in�nite number of partitions. Even for a �nite dictionary of size M

there are

 
M

m

!
partitions BG , so if M is large we must compute an inordinately large

number of generalized centroids. We would like to maintain the structure of the decoder

in (8.4), and restrict our dictionary changes to modi�cations of the parameter set a. Even

if we are able to �nd the generalized centroids of each region BG , the K parameters must

satisfy

 
M

m

!
constraints.

We can use a nonlinear minimization technique to modify the parameters a in order

to reduce the expected global quantization error Ekf �D(f;G; a)k2 rather than trying to

reduce the error from each partition. If we are then able to �nd an optimal encoder for

any given decoder, we can perform an analog of the Lloyd algorithm.
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We set the parameters a to some initial value and then optimize a for a training set

ff (k)g1�k�n by the following procedure.

1. For each f
(k) in the training set, we �nd an optimal encoding G(k)(a) so that

kf (k) �D(f (k);G(k)(a); a)k2 � kf (k) �D(f (k);G0; a)k2 (8:6)

for all other encodings G0.

2. Given this encoding, we use a minimization step to improve the dictionary. We �nd

an a0 so that

1

n

X
k

kf (k) �D(f (k);G(k)(a); a0)k2 <
1

n

X
k

kf (k) �D(f (k);G(k)(a); a)k2: (8:7)

If no such a0 can be found we terminate the algorithm. Otherwise, we set a = a0 and

repeat.

After the algorithm �nishes, we perform one �nal step of the encoding so that the

encoder and the decoder use the same value of a. Each time step 2 is followed by step 1, we

reduces or leave unchanged the global error 1
n

P
k kf (k) �D(f (k);G; a)k2, so the algorithm

generates a sequence of quantizers whose average error at step m, e(am) decreases to

some lower limit e(a1). By iterating the algorithm a su�cient number of times, we can

generate a parameter set a which gives an error which is arbitrarily close to e(a1). In

our numerical implementation, we stop the algorithm when the fractional decrease in the

error, (e(am)�e(am+1))

e(am)
is less than some threshold.

8.3 Optimizing Dictionaries with the Levenberg-Marquardt

Algorithm

We now describe in more detail the process of optimizing the parameter values of the dic-

tionary elements. We suppose for the moment that we have an optimal encoding available.

We denote by SG(a) the operator which maps an M -vector of coe�cients (�0; . . . ; �M�1)

to the sum
P

M�1
k=0 �kgk

(a). If we express the elements gk as vectors, SG(a) will be the

matrix whose columns are the dictionary elements with indices in G. We assume each g

is a C2 function of the parameters a, and that kg(a)k = 1 for all values of  and a.

The optimal set of coe�cients B for an expansion of f over fgg2G is given by the

coe�cients of the projection of f onto the span of the fgg2G,

B = (S�G(a)SG(a))
�1
S
�
G(a)f: (8:8)

The quantization error will be

kRM
fk = kf � SG(a)Bk (8.9)

= kf � SG(a)(S
�
G(a)SG(a))

�1
S
�
G(a)fk: (8.10)
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We estimate the expected error Ekf �D(f;G; a)k2 = EkRM
fk2 by taking a set of n

realizations f (k) of the process and computing the sum

Ekf �D(f;G; a)k � e(a) =
1

n

nX
k=1

kRM
f
(k)k2 (8:11)

Using (8.9) we can express e(a) as a di�erentiable function of a and use the Levenberg-

Marquardt algorithm to minimize this error by iteratively modifying the parameters a. If

we are far from a minimum, we use a steepest descent method to minimize (8.11). At each

iteration we compute an updated set of parameters a0,

a0 = a� Cre(a); (8:12)

for some constant C. If we are su�ciently close to a minimum and if we can compute the

Hessian accurately, we can reduce (8.11) using Newton's method. We take

a0 = a �H
�1re(a): (8:13)

The Levenberg-Marquardt method adaptively interpolates between these two methods

by making use of the following observations [45][40]. Let ai and aj be any two single

parameters of a. We have

@e(a)

@ai

=
1

n

X
k

2Re <
@R

m
f
(k)

@ai

; R
m
f
(k)

> (8:14)

and

@
2
e(a)

@ai@aj

=
1

n

X
k

2Re <
@R

m
f
(k)

@ai

;

@R
m
f
(k)

@aj

> +
1

n

X
k

2Re < R
m
f
(k)
;

@
2
R
m
f
(k)

@ai@aj

> :

(8:15)

We assume that the residues Rm
f
(k) are small, so we can approximate the second derivative

(8.15) with just the �rst sum of �rst derivative terms. We use this approximation for the

second derivative to form an approximation for the Hessian in (8.13).

Dimensional analysis of the steepest descent algorithm indicates that we can estimate

the order of magnitude of the requisite step from the reciprocals of the diagonal elements

of the Hessian. In our above approximation for the Hessian, these diagonal elements are

given by the positive quantities 2
n

P
k
k@R

m
f
(k)

@ai
k2, so in using these to determine the step

size, we do not step against the gradient.

For Newton's method, we have

H�a = �re(a); (8:16)

where H is our approximation to the Hessian, and for the steepest descent, we now have

�D�a = �re(a); (8:17)
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where � is a scaling constant and D is the diagonal matrix with the diagonal equal to that

of the approximated Hessian. The Levenberg-Marquardt algorithm combines these two

equations, and obtains successive values of the a by solving,

(H + �D)�a = �re(a): (8:18)

When � is large, we are e�ectively performing a small step of steepest descent. When �

is small, we are performing a step of Newton's method. The value of � is adjusted each

iteration. If a step causes the error e(a) to increase, the step is discarded and � is increased

so that the next iteration will be more like a steepest descent step with a small stepsize. If

a step causes the error to decrease, � is decreased so that the next iteration will be more

like a step of Newton's method.

8.4 Implementation

Computing the optimal encoding is too slow in practice because the problem is NP-

complete. We instead approximate the optimal encoding using a pursuit algorithm. When

we use a non-optimal encoder, our algorithm does not necessarily yield decreasing values

of e(am) as m increases. The reason is that after we have changed the parameter a to a0

to decrease (8.7), the new average error obtained from the modi�ed decoder acting on the

modi�ed encoding,
1

n

X
k

kf (k) �D(f (k);G(k)(a0); a0)k2;

is not necessarily less than the average error obtained from the modi�ed decoder operating

on the old encoding
1

n

X
k

kf (k) �D(f (k);G(k)(a); a0)k2:

When the change in the parameter value �a is su�ciently small, the change of a does not

a�ect the encodings G(k)(a) (unless one of the functions f (k) lies on a boundary of one of

the nearest neighbor cells BG , a set of measure 0), so the algorithm still works. When �a

is large enough that a few of the f (k)'s have di�erent encodings after the modi�cation of

a, the algorithm will still cause e(a) to decrease as long as any increase in the error due to

the non-optimal repartitioning is o�set by the decrease in the error from adjusting a.

Thus, when the change in a is su�ciently small, our algorithm will work with a non-

optimal encoder. The Levenberg-Marquardt method discards steps for which e(a0) in-

creases, so by using such an adaptive minimization scheme we are assured that the step

size �a will be small enough that we obtain a sequence of am for which the average error

decreases.

When we replace the encoder with a matching pursuit in our algorithm, the coe�cients

B are no longer obtained by projecting f onto the span of fgg2G, so we will have to modify
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our expression (8.8) for obtaining B from f and G. We �rst obtain an explicit expression

for the quantization error RM
f as a product of the projection operators,

R
M
f =

2
4Y
2G

(I � gg
�

)

3
5
f: (8:19)

We can simplify the form of the error by making the assumption that the �rstM elements

of the optimal expansion form a nearly orthogonal set, when M is not too large. This

assumption clearly holds forM = 1. When the energy of the functions being decomposed is

spread uniformly over several dictionary elements, the pursuit will select �rst the elements

whose inner product with elements previously selected is small. There is a bias against

selecting an element g which correlates with previously selected ones because in removing

the element gk
which correlates with g , the pursuit decreases the inner product j <

R
k
f; g > j. We thus assume that the inner products < gi

; gj
>= O(�) when i 6= j.

Expanding the series (8.19) and retaining �rst order terms in � gives

kRM
fk2 = kfk2�

X
0�j<M

j< f; gj
> j2+

X
0�j<M

X
k 6=j

< f; gj
>< gj

; gk
>< gk

; f > +O(�2):

(8:20)

This representation allows us to compute quickly the derivatives with respect to the pa-

rameters a that we need for the Levenberg-Marquardt minimization procedure.

We can make a similar simpli�cation when approximating the optimal encoder with

an orthogonal pursuit. We again assume that < gi
; gj

>= O(�) when i 6= j. The matrix

S
�
GSG is very close to the M by M identity matrix. We can write S�GSG as I + A where A

has small norm. We can approximate

(S�GSG)
�1 = (I + A)�1

= I �A+ O(A2)

� 2I � S
�
GSG: (8.21)

8.5 Results

We test our algorithm by adapting a subset of the Gabor dictionary to a process which

generates random chirps. Our dictionary consists of the Gabor functions
1
p
s0

g(
t� u

s0

)ei�t

periodized on the domain t 2 [0; 2�). Here g(t) is the Gaussian 21=4e��t
2
. The dictionary

contains elements for all values u and � in [0; 2�). The scale s0 is �xed. Our source

generates chirps of the form Ce
ia(t�b)2 , periodized on the domain, where the value of b is

uniformly randomly distributed in [0; 2�).

The chirps generated by this source have support in the time-frequency plane on lines

with slope 2a and time-axis intercept 2ab. We can envision the expansions of these chirps

over the �xed-scale Gabor elements as a covering of this slanted line with small rectangles.
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Figure 8.1: Evolution of the scale parameter s0 under iterations of the adaptation algo-

rithm. The vertical axis is the scale and the horizontal the iteration of the algorithm. The

dotted line corresponds to s0 = smax:
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Figure 8.2: Evolution of the average residual norm kRM
fk for the training set under

iterations of the adaptation algorithm. The vertical axis is the error and the horizontal the

iteration of the algorithm. The dotted line is the average residual norm when s0 = smax.
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The eccentricity of the rectangles is controlled by the scale parameter. The inner product

of one of the dictionary elements and one of these chirps is maximal when � = 2a(u � b)

and s0 =
q

�

a
, i.e. when the diagonal of the rectangles in the time-frequency is aligned with

the chirp. If we look at the time-frequency energy representations of the expansions of one

of these chirps, we see that in the time-frequency plane the energy of the selected atoms

line up along the � = 2a(u� b), and that there is little energy overlap among the largest

selected elements. We expect, then, that we will obtain an optimal decomposition when

s0 � smax =
q

�

a
.

For our numerical experiments we take a = 9. We �nd that the parameter s0 quickly

converges to a value close to
q

�

a
. For our experiments we used a training set of 20 test

vectors in a space of dimension 64, and we took M = 10. Figures 8.1 and 8.2 show the

evolution of the parameter s0 and the average error e(s0) over a number of iterations of

the optimization algorithm. We see, then, that the use of the non-optimal pursuit does

not cause problems the convergence of the algorithm.

We note that the algorithm converges to a value which is slightly di�erent from the

value �

a
which we expect to be optimal, and when we compute the average error from the

training set with the value s0 =
�

a
, we �nd that it is less than the error obtained from the

value to which the algorithm has converged. In implementing our algorithm with more

complicated parameter sets, we will need to incorporate some form of stochastic relaxation

into our minimization step, such as simulated annealing [37] [41] to avoid becoming trapped

in the numerous local minima of the error surface.



Chapter 9

Conclusion

The problem of optimally approximating a function with a linear expansion over a redun-

dant set is a computationally intractable one. The greedy matching pursuit algorithms pro-

vide a means of quickly computing compact approximations. The orthogonalized matching

pursuit algorithm converges in a �nite number of steps in �nite dimensional spaces. The

much faster non-orthogonal matching pursuits yield comparable expansions for the coher-

ent portion of the signal.

Renormalized matching pursuits possess local topological properties like those of chaotic

maps, including local separation of points, and local mixing of the domain. For a partic-

ular dictionary, the renormalized pursuit is in fact chaotic and ergodic. Ergodic pursuits

possess invariant measures from which we obtain a statistical description of the residues.

For dictionaries which are invariant under the action of a group operator, we can

construct a choice function which preserves this invariance. We can deduce properties

of the invariant measure of a pursuit with such a dictionary; in particular, the invariant

density function of a translation and modulation invariant pursuit will be stationary and

white.

Numerical experiments with the Dirac-Fourier dictionary show that the asymptotic

residues of the pursuit converge to dictionary noise, the realizations of a white, stationary

process. Our stochastic di�erential equation model shows that the coherent structures, the

elements with large inner products j < R
n
f; g > j, are quickly removed by the pursuit.

The asymptotic convergence rate is slow, and the asymptotic inner products < R
n
f; g >

essentially perform a random walk until they reach a constant �1 and are selected.

With an appropriate dictionary, the expansion of a signal into its coherent structures

provides a close approximation with a small number of terms. We can adapt a dictionary

for decomposing a given class of signals using a variant of the generalized Lloyd algorithm.

An important area for further research is the problem of extracting higher level features

from signal decompositions. Given an expansion of a speech signal into Gabor functions, for

example, can we more e�ciently extract phonemes? By adopting a hierarchical structure,

like that of the cortex, it may be possible to extend the pursuit algorithm e�ciently to the

81



CHAPTER 9. CONCLUSION 82

extraction of higher level features.

Another area for further re�nement is the optimality criterion used for the approxima-

tions themselves. As we have shown, the current minimal approximation error criterion

leads to instabilities in the expansions and is partially responsible for the intractability of

the optimal approximation problem. A modi�cation of the optimality criterion could lead

to more stable expansions and more e�cient algorithms.
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