
Image Coding Using Optimized Signi�cance Tree Quantization
Geo�rey M. Davis and Sumit Chawla

Math, Computer Science Departments

Dartmouth College, Hanover, NH 03755

fgdavis,chawlag@cs.dartmouth.edu

Abstract

A number of recent embedded transform coders, including Shapiro's EZW scheme,

Said and Pearlman's SPIHT scheme, and Xiong et al.'s EZDCT scheme employ

a common algorithm called signi�cance tree quantization (STQ). Each of these

coders have been selected from a large family of signi�cance tree quantizers

based on empirical work and a priori knowledge about transform coe�cient be-

havior. We describe an algorithm for selecting a particular form of STQ that is

optimized for a given class of images. We apply our optimization procedure to

the task of quantizing 8x8 DCT blocks. Our algorithm yields a fully embedded,

low-complexity coder with performances from 0.6 to 1.9 dB better than baseline

JPEG for standard test images.

1 Introduction

A number of recent image coding schemes, including Shapiro's embedded zerotree wavelet

scheme (EZW) [4], Said and Pearlman's set partitioning in hierarchical trees scheme (SPIHT)

[3], and Xiong et al.'s EZDCT scheme[6], all employ an embedded signi�cance mapping and

quantization technique that we refer to as signi�cance tree quantization (STQ).

The EZW, SPIHT, and EZDCT schemes are members of a large, general family of em-

bedded, tree-structured signi�cance mapping schemes. We analyze the performance of such

schemes below, interpreting them both as crude entropy coding schemes and as constrained

vector quantization schemes. We describe a family of random processes that are related

to simple models of subband coe�cients in images for which these embedded schemes are

optimal. Our analysis provides a partial explanation for the excellent performance of these

cited coding schemes.

The EZW, SPIHT, and EZDCT schemes make use of signi�cance mapping schemes

chosen based on some a priori assumptions about transform coe�cient behavior in images.

We describe a procedure for �nding an optimized signi�cance map given a training set of

images. We use this procedure to obtain quantization schemes based more on actual image

data and less on assumptions about the form of image data. We employ our optimization

procedure for 8x8 DCT blocks and obtain a fully embedded, low-complexity scheme that

yields substantial improvements in PSNR over baseline JPEG. Without using any entropy

coding, our scheme also outperforms optimized JPEG [5] and a version of EZDCT that uses

no entropy coding.

2 Signi�cance Tree Quantization

2.1 Signi�cance Trees

Signi�cance tree quantization is a simple scheme for quantizing an n-vectorX = (X1; X2; : : :

; Xn) of coe�cients using a tree-structured signi�cance map. The basic data structure in an

STQ scheme is a tree or set of trees in which each leaf corresponds to one of the scalars Xk.

We classify nodes according to their height in the tree, writing N
(j)

k
for the kth node in the
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tree at height j from the leaves of the tree. We denote the leaves of the tree by N
(0)
m . The

height of a node N
(j)
n with children fN

(j1)
n1

; : : : ;N
(jk)
nk

g is given by 1+max (j1; : : : ; jk). The

signi�cance trees in EZW are quadtrees, whereas the trees in SPIHT and EZDCT possess

an alternating 4-fold and 5-fold splitting structure. We will consider more general trees that

will be determined by an optimization procedure.

We call a coe�cient Xk signi�cant with respect to a given threshold T if jXkj � T ;

otherwise we say it is insigni�cant. A coe�cient is newly signi�cant if 2T > jXkj � T , i.e.

if it is signi�cant with respect to T but not with respect to 2T . A node N
(j)

k
is signi�cant

if it or any of its descendents are signi�cant; otherwise it is insigni�cant. Similarly, N
(j)

k
is

newly signi�cant if it is signi�cant with respect to T but not with respect to 2T .

Zerotree quantization proceeds iteratively, producing at each stage a map of all coef-

�cients that are newly signi�cant with respect to thresholds T0,
T0

2
;
T0

4
; : : : . The initial

threshold T0 is chosen so that 2T0 > maxfXig. The signi�cance map at each stage is gener-

ated by the recursive function NodeSignificance() which takes as its arguments a current

node and a current threshold. Iteration k of the zerotree coding algorithm consists of a

call to NodeSignificance() with current node equal to the root N
(R)
0 and the current

threshold equal to T02
�(k�1).

NodeSignificance() produces a signi�cance map of the current node and all its children

with respect to the given threshold. It �rst tests the signi�cance of the current node. If

the node is insigni�cant, the procedure emits a '0' and then returns. There is nothing more

to code in this case, since the current node's insigni�cance means that all its children are

insigni�cant as well. If the node is newly signi�cant, the procedure emits a '1' and then

calls NodeSignificance() for all the children of the current node. If the node is signi�cant,

but not newly signi�cant, the procedure emits nothing, but calls NodeSignificance() for

all the children of the current node. In this case there is no need to emit the signi�cance of

the current node since it is known from prior iterations of the algorithm. Pseudocode for

the algorithm is as follows:

NodeSignificance (current node N, current threshold T )

� If N is insignificant with respect to T, emit '0' and return;

� If N is significant with respect to T , emit '1';

� Call NodeSignificance() for each child of N with threshold T;

� Return;

The result of iterating this procedure K times is a sequence of 0's and 1's that bracket

the magnitudes of all coe�cients into one of the intervals f(T02
�k
; T02

�k+1]g1�k�K or

[0; T02
�K ]. We can compress this output using an adaptive arithmetic coder of some kind[1],

or for low complexity applications the output can be used as is. We now describe an em-

bedded procedure for quantizing coe�cients once their magnitudes have been speci�ed.

2.2 Embedded Scalar Quantization

The above procedure generates an embedded signi�cance map for the coe�cients. We

couple this mapping with an embedded quantization scheme, performing one pass of the

quantization for every pass of the signi�cance map. This quantization procedure is used in

the EZW, SPIHT, and EZDCT schemes.
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After the �rst pass of NodeSignificance()all coe�cients are known to be either newly

signi�cant or insigni�cant, and all coe�cients are known to lie in the interval (�2T0; 2T0).
We �rst emit a bit indicating the sign of each newly signi�cant coe�cient. With the signif-

icance map and these signs the decoder can determine which of the intervals (�2T0;�T0]
(newly signi�cant and negative), (�T0; T0) (insigni�cant), or [T0; 2T0) (newly signi�cant and
positive), contain each coe�cient. If we were to decode the quantized coe�cients at this

stage, we would decode them to the centers of their respective intervals, namely to �3
2
T0,

0, and 3
2
T0.

After the second pass of the signi�cance mapping we emit signs of the coe�cients that

are newly signi�cant in the second pass. This re�nes the interval (�T0; T0) occupied by

the coe�cients insigni�cant after pass 1 into into the 3 subintervals (�T0;�
T0

2 ], (�
T0

2 ;
T0

2 ),

[T02 ; T0). We re�ne the already signi�cant coe�cients by emitting a bit to indicate whether

they lie on the left or right half of their respective intervals. If we were to dequantize

coe�cients at this stage, we would decode them to the centers of their respective inter-

vals. Subsequent passes of the quantization proceed in a similar fashion. The result is an

embedded uniform quantizer with a double-width deadzone.

2.3 Signi�cance Test Amortization

We now address the question of why this type of signi�cance mapping is e�ective. We moti-

vate the use of signi�cance tree quantization from two perspectives. It provides amortization

of signi�cance test costs, and it performs a constrained form of vector quantization

At the simplest level, signi�cance tree quantization provides a means of e�ciently coding

random variables having fractional bit entropies without having to resort to arithmetic

coding. Consider the problem of entropy coding a collection of independent, identically

distributed random variables Xi that take on values 1 or 0 with probabilities p and 1� p,

respectively. Suppose that 1's are rare, i.e. p � 1. The simplest approach is to use a bit

to specify the value of each Xi, but of course this is ine�cient since the entropy of each

random variable, H(p), will be considerably less than 1.

When p is su�ciently small we can reduce the coding cost by aggregating the Xi's into

sets. We test the entire set for signi�cance and only test the individual Xi's if the set is

signi�cant. Here a set of Xi's is signi�cant if any Xi in the set is equal to 1. When p is

small the additional cost of the signi�cance test is outweighed by the savings when the set

is insigni�cant. This aggregation and testing is equivalent to grouping the Xi's into trees

of height 1 and using the signi�cance mapping procedure above.

LetN(1) be the root of a tree of height 1 with K1 variables Xi as children.We de�ne p1 to

be the probability thatN(1) is signi�cant, and we have p1 = 1�(1�p)K1 . The expected cost

per coe�cient of coding the coe�cients in the tree N(1) is C1 =
1
K1

+ p1. Our aggregation

provides a cost savings over the coding coe�cients individually when p < 1�
�

1
K1

� 1

K1 .

Provided that p is su�ciently small, we can further reduce costs by iterating this process

of aggregation. We form a height 2 tree with root N(2) by grouping together K2 of our

height 1 trees and so on. Coding costs do not decrease inde�nitely, however. The cost of

the topmost signi�cance check decreases at each iteration since it is amortized over more

symbols, but this decrease in cost is o�set by the more rapid decrease in the probability of

insigni�cance.

Let pj be the probability that the height j tree N(j) is signi�cant. We have pj =
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Figure 1: The �gure on the left shows entropy vs. per-symbol cost of coding a collection

of i.i.d. Bernoulli random variables using zerotrees. p is the probability of a 1. The solid

curve is the entropy per symbol, and the dashed curve and the dashed-dotted curves are the

zerotree costs with all nodes having 2 and 4 children respectively. All trees have maximal

heights. The �gure on the right shows an optimized partition of an 8x8 DCT block for the

512x512 Lena image.

1� (1� pj�1)
Kj , where p0 = p. The cost per symbol for a height J tree is then

CJ =

"
JY

m=1

Km

#�1
�

2
41 + JX

n=1

0
@pn JY

l=J+1�n

Kl

1
A
3
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Figure 1 compares the per-symbol cost of our hierarchical signi�cance testing procedure to

the entropy as a function of the probability of signi�cance p. The singularities in the curve

occur at the points at which we increase the number of levels in the hierarchical procedure.

While the procedure does not achieve the limit except at p = 0 and p = 1
2
, it deviates by

no more than 0.27 bits/symbol for K = 2 and 0.20 bits/symbol for K = 4 from H(p) and

provides a signi�cant improvement over our crude initial 1 bit/symbol encoding at a very

low computational cost. Thus, at the lowest level, zerotree quantization can be seen as

providing a crude, low-complexity entropy coding for independent symbols.

2.4 Constrained Vector Quantization

Signi�cance tree quantization o�ers greater potential for dependent random variables, since

it allows exploitation of the coupling. For this case we will examine the performance of STQ

when coupled with an ideal entropy coder. Consider a height 1 zerotree quantization of the

variables X1 and X2 taking values in f0; 1g. Here we make no assumption that X1 and

X2 are independent. Denote the root of this tree by N(1) and let S be a random variable

assuming the value 1 if the root node N(1) is signi�cant and 0 otherwise. The �rst step of

STQ is to code the value of S. The expected bit cost of this encoding is H(P (S = 1)). If

the root is signi�cant, we then code the values of each of the Xi. For an optimal encoding

we must condition the encoding of X1 on S and X2 on X1 and S. Thus our expected cost

is

C = H(S) + P (S = 1) [H(X1jS = 1) +H(X2jX1; S = 1)] (2)
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An application of the chain rule shows that this cost is equal toH(X1; X2), the joint entropy

of X1 and X2.

The above 2-variable example shows that by using conditioning we can use STQ coupled

with an arithmetic coder to code the pair X1; X2 at the Shannon limit provided we know

the values of P (S = 1), P (X1 = 1jS = 1), P (X2 = 1jX1 = 0; S = 1), and P (X2 = 1jX1 =

1; S = 1). In principle we can optimally code the signi�cance of any number of Xi's in this

way provided we employ appropriate conditioning. In practice, however, we do not have

knowledge of all the conditional probabilities we require. Moreover, the number of context

probabilities we need is exponential in the number of variables, and it becomes di�cult

to obtain accurate estimates of them. The SPIHT coder of Said and Pearlman [3] uses

an adaptive conditioning scheme similar to the one described above for determining the

signi�cance of sets of 5 variables, but it is di�cult to extend much beyond this without the

estimation becoming impractical.

We can sidestep this problem of expanding contexts and still obtain an optimal encod-

ing for an important class of random vectors. Moreover, this class is closely related to a

simple model of the behavior of image transform coe�cients, so our analysis provides an

explanation of the good performance of STQ schemes in practice.

Consider a compound probability model for a pair of random variables X1 and X2. The

model is a mixture of 2 di�erent states, one deterministic and one random. The deterministic

state occurs with probability �1. In this state we have X1 = 0 and X2 = 0. The random

state occurs with probability 1��1. In this state the variables X1 and X2 are independent,

identically distributed, and equal to 1 with probability p.

The probability that the magnitudes of two adjacent subband coe�cients from an image

exceed a given threshold can be approximated using the above model. Here the di�erent

states correspond to smooth and textured portions of an image. Transform coe�cients

are small in smooth regions of an image, which corresponds to the all-zero state. The

coe�cients in a textured image region are well approximated by i.i.d. random variables,

which corresponds to the random state. In the absence of side information identifying

particular coe�cients as members of a smooth or textured region, we can model the state

as a random variable.

As we saw above, we can optimally encode the 2-variable vector above using STQ with

a small context model. The interesting thing is that we can maintain optimality for higher

dimensional extensions of this model without having to increase the size of the context

model.

Consider a vector of 4 random variables X1; X2; X3; and X4. We build a new compound

model by joining together a pair of our above compound 2-vectors and adding a new state.

In state 1, which occurs with probability �2, the entire 4-vector is 0. In state 2, the pairs

(X1; X2) and (X3; X4) are distributed independently according to our above compound

model. We can continue this process and generate vectors of size 2n for any n. These models

are all obtained by taking sets of independent variables and coupling them by introducing

states in which subsets of the variables are all zero. These models correspond to subband

coe�cients of images containing mixtures of textured and smooth regions of varying sizes.

The model is not completely satisfactory, since the \smooth" and \textured" regions all

are of dyadic length and begin and end on dyadic points, but it does capture some very

important behavior of image subband coe�cients.

We use a height n binary tree N(n) to code the 2n vector X(n). The tree is formed by

pairing the scalars X2k�1; X2k together to form the height 1 trees N
(1)

k
, then pairing the
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trees N
(1)

2k�1;N
(1)

2k together to form the tree N
(2)

k
and so on. Let S

(j)

k
be a variable that is 1

if the node N
(j)

k
is signi�cant and 0 otherwise. We encode the tree in a recursive fashion as

before, but now we use arithmetic coding with conditioning when coding the signi�cance of

a node. We code the signi�cance of the root at a cost of H(S
(n)
1 ). If the root is insigni�cant,

we are done. If not, we now code S
(n�1)
1 conditioned on the event S

(n)
1 = 1, and we code

S
(n�1)
2 conditioned on S

(n)
1 = 1 and the value of S

(n�1)
1 . We continue recursively coding

all signi�cant nodes, at each stage conditioning on the signi�cance of the parent and of

siblings. This local conditioning is all we need for optimal coding because of the way we

have constructed the random variables Xi. The coupling between the variables is entirely

due to their being zero together, and that coupling is taken care of by the hierarchical

tests for signi�cance. The exponentially growing contexts required for optimal coding in

the general case collapse due to the constrained form of our model.

The excellent performance of the EZW and SPIHT wavelet coders can be explained in

part by their ability to e�ectively exploit coe�cient interdependencies of the sort described

above. As we have seen, these models model important aspects of smooth and textured

regions in images.

The performance of signi�cance tree quantization is strongly dependent on the particular

manner in which we group coe�cients together to form zerotrees. In the next section we

describe an algorithm for optimizing these trees for a given image or ensemble of images.

3 Optimized Signi�cance Tree Selection

Test images compressed with the SPIHT coder [3] have PSNR's on the order of 1 dB

higher than those reported for Shapiro's EZW coder [4]. The SPIHT coder makes minor

improvements in EZW in a number of areas: it uses a slightly more e�ective �lter set,

it makes better use of context-based conditioning in its entropy coder, and it minimizes

coe�cient ordering e�ects. A large component of the PSNR improvement is due to an

improvement in the construction of zerotrees. The SPIHT coder makes very e�ective use of

the fact that when sets containing wavelet coe�cients from many scales become signi�cant,

it is usually due to the coarsest scale coe�cients in the set.

The zerotrees in both EZW and SPIHT were obtained from a number of assumptions

about the behavior of wavelet coe�cients in images. The zerotree structure in EZW is simple

and elegant, but, as the SPIHT coder shows, it leaves considerable room for improvement.

Is there more to be gained by improving our zerotree partitions? The algorithm below

provides a means of answering this question.

An intriguing experiment by Xiong et al.[6] has shown that a SPIHT-style quantization

is quite e�ective for the discrete cosine transform, yielding some of the best PSNR's in the

literature for DCT-based coders. Although the zerotrees in [6] have been modi�ed slightly

to �t the structure of the DCT, they are still rather arbitrary, especially considering that

the trees were originally designed for a wavelet transform. What are suitable zerotrees for

the DCT? Our experiments below give optimized trees for particular images.

In the next section we introduce an algorithm for optimizing zerotrees for a given set

of coe�cients, whether they come from a wavelet transform or DCT block or from a raw

image. We then describe a family of signi�cance trees suitable for a DCT-based coder

and we optimize our partitioning over this family. Our optimized zerotree encoder yields

signi�cant gains over that of [6].
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3.1 Zerotree Optimization

Suppose we have a set of coe�cients that we want to quantize using STQ. The set could

be an 8 � 8 DCT block, for example, or a wavelet subtree of a �xed depth. Suppose

also that we are given a training set consisting of M instances of this set. The discussion

below assumes an additive error measure; in our experiments we use squared error. We

further assume a �xed quantization scheme for coe�cients determined to be signi�cant. As

a result, no matter what kind of tree structure we use to quantize the coe�cients and the

signi�cance map, when we quantize for thresholds T; 12T; : : : down to 2�nT , we obtain the

same total error. The cost of quantizing signi�cant coe�cients is also independent of our

zerotree structure. The cost of the signi�cance map, however, depends strongly on the tree

structure we use. The goal, then, is to �nd a tree structure for the signi�cance mapping that

minimizes the total cost of encoding all the members of the training set. This problem is the

dual of the more commonly addressed problem of minimizing distortion with constrained

cost.

Consider the cost of obtaining a signi�cance map for a set of coe�cients� = fX1; : : :XKg
by grouping them together into a tree with root node N(�). Our goal is to �nd the tree

structure with rootN(�) that minimizes the cost of determining the map for a �xed thresh-

old T . Let I(�;T ) and W (�;T ) be the number of members in the training set for which

N(�) is insigni�cant and newly signi�cant, all with respect to T . These quantities are �xed

by the coe�cients in the set �; changing the tree structure does not a�ect them.

We break the total cost of the signi�cance map into two components. Let R(�;T ) be the

cost of determining the signi�cance of the root node N(�), and let C(�;T ) be the total cost

of mapping the children of N(�). We consider the case of obtaining a map without entropy

coding. The procedure below can, with minor modi�cations, be adapted for optimization

with entropy coding.

In the absence of entropy coding we pay one bit for testing the signi�cance of the

node N(�) whenever it is insigni�cant or newly signi�cant. The cost of the signi�cance

tests R(�;T ) is thus I(�;T ) +W (�;T ). This root cost depends only on the coe�cients

contained in � and is not a�ected by the tree's structure.

The children of N(�) determine a partition of � into n subsets �1; : : : ;�n. Let

C(�j; T ) be the total cost of mapping the children of the trees N(�1); : : : ; N(�n
) when

these trees are not attached to the node N(�). Attaching the trees N(�1); : : : ; N(�n
) to

the node N(�), results in a considerable cost savings when the nodes are all simultaneously

insigni�cant. We need only pay for a single signi�cance test at the root rather than for a

signi�cance test at each node. In all cases, we pay additional bits to determine the signi�-

cance of N(�). This additional cost is reected in the quantity R(�;T ). The total cost of

mapping the children C(�;T ) is given by

C(�;T ) = R(�;T )� nI(�; T ) +
nX
i=1

C(�j; T ) (3)

From (3) we see that our problem of minimizing the total cost of the signi�cance map for

the set � can be broken into a set of smaller minimization problems. We can therefore solve

our minimization problem using dynamic programming. We minimize C(�;T ) by choosing

partitions of� that minimize C(�j; T ). For example, we can make the partition signi�cance

tests R(�j;T ) small by grouping together coe�cients that tend to be insigni�cant simulta-

neously. In the case of a wavelet transform signi�cance map, this can be accomplished by

grouping together �ne-scale coe�cients that are clustered together in space.
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3.2 Families of Partitions

Finding an optimal signi�cance tree for n coe�cients requires that we solve subproblems

involving all possible collections of n� 1 coe�cients, n � 2 coe�cients, and so on down to

1 coe�cient. For even moderate values of n the number of possible partitions is enormous,

so we cannot hope to �nd optimal cost partitions except for very small values of n. We

consider instead the problem of optimizing trees over a given family, where the family has

been chosen based on a priori knowledge about the given coe�cients. Our search space,

although constrained, is still quite large. For example, a wavelet analog of the search space

described below would include both the EZW and SPIHT quantization schemes. While our

optimization incorporates some assumptions about the form of our data, it uses far fewer

than related signi�cance tree schemes.

For our numerical experiments we seek optimized signi�cance trees for 8�8 DCT blocks.

DCT coe�cients decay rapidly in frequency for most 8�8 blocks. As a result, high frequency
coe�cients will tend to be insigni�cant simultaneously. By grouping these coe�cients to-

gether in our signi�cance tree, we can in many cases indicate the insigni�cance of a large

collection of high frequency coe�cients by querying a single parent node. An important

property of the family of partitions we will consider is that the partitions group high fre-

quency coe�cients together.

Some of the most important high frequency content of images comes from edges. DCT

coe�cients for isolated edges possess a well-de�ned structure. The coe�cients possess a

local maximum along a line extending from the DC origin. The angle of this line in fre-

quency depends on the angle of the edge. Coe�cient behavior is most easily described in

polar coordinates. Coe�cients fall o� radially away from the frequency origin and as the

angle moves away from the maximal angle. Because of this structure, DCT coe�cients

possessing similar angular coordinates will tend to be either signi�cant or insigni�cant si-

multaneously. A second feature of the family of partitions we consider is that the partitions

group coe�cients with similar angular coordinates together.

We de�ne a new coordinate system for each DCT block. Let r = max(x; y) and let

� = arctan( y
x
) where x and y are frequency coordinates for the DCT coe�cients each ranging

from 0 to 7 and having origin at the DC value. We will restrict our attention to \rectangular"

partitions in this polar coordinate system of the form f(r; �) : r1 � r � r2; �1 � � � �2g

which we will write as [r1; r2; �1; �2].

4 Results

Our goal is to �nd an optimal signi�cance tree for the AC coe�cients of a DCT block,

i.e. we seek to �nd an optimal tree for mapping the coe�cients in the rectangle [1; 7; 0; �2 ].

Finding this optimal tree requires that we solve a set of subproblems, each of which consists

of �nding an optimal tree for mapping coe�cients in a rectangle [r1; r2; �1; �2]. We optimize

the signi�cance tree for [r1; r2; �1; �2] by �nding the lowest cost partition into children of

the form [r1; r; �1; �], [r1; r; �; �2], [r; r2; �1; �], and [r; r2; �; �2]. Each subproblem involves

testing partitions for values of r between r1 and r2 and for values of � between �1 and �2.

This search is fast, since there are at most 8 distinct values of r and 16 distinct values of

�. We enlarge our search space slightly by also considering splits only in r, splits only in �,

and no split at all. We also allow merging parent and child nodes. The right hand side of

�gure 1 shows the result of our optimized partitioning for the DCT blocks in the 512� 512

Lena image. The nested closed curves show how each group of coe�cients is partitioned

into subsets of coe�cients. The blocks of black squares indicate coe�cients at the lowest
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level of the tree that are children of a single node.

The table below shows PSNR's at several rates for our optimized signi�cance tree quan-

tization for the 512x512 Lena and Barbara test images. The cost of coding the particular

signi�cance tree structure used, roughly 80 bytes, is included in the overall image cost. For

comparison, we have included PSNR's for similar DCT-based schemes, including baseline

JPEG[2], improved JPEG [5], and EZDCT without arithmetic coding[6]. We have opti-

mized our signi�cance trees for the case of no entropy coding, and the results shown in the

table make no use of entropy coding. We note that arithmetic coding improves the EZDCT

results by roughly 1 dB. A signi�cance tree optimization procedure for the entropy coded

case is currently under development.

Our signi�cance tree quantization scheme (STQ) provides substantial performance im-

provements over baseline JPEG for the Barbara image, with improvements in PSNR ranging

from 0.7 to 1.7 dB. STQ provides more modest improvements over EZDCT for Barbara at

low bit rates, performing slightly worse at higher bit rates. Improved JPEG, however, al-

ways performs better than STQ on Barbara. For the Lena image, results are somewhat

mixed. STQ provides modest gains over EZDCT at low rates and roughly equivalent per-

formance at high rates. However, at low rates, JPEG and improved JPEG both yield better

results. The reason for the relative decline in performance of these schemes at low rates

is that the coding of DC values is very ine�cient. In our experiments we have optimized

signi�cance trees only for the AC coe�cients. DC coe�cients have been coded using a

signi�cance tree based on [3] following [6]. At low bit rates this ine�ciency in the DC

coe�cients is particularly pronounced and results in poor performance. The �nal column

shows the result of performing a Haar transform on the DC values and coding the values

using the coder of [3] with no entropy coding. This more e�ective coding of the DC values

yields a substantial performance improvement at low rates.

Our optimization is fairly robust to signi�cance tree mismatch. Switching the signi�-

cance trees for Lena and Barbara leads to a relatively small loss of performance for Barbara

(0.0-0.3 dB) and for Lena (0.0-0.5 dB). We are currently investigating signi�cance trees op-

timized for ensembles of images of various classes, including motion compensated residual

images.

PSNR (dB)

Rate JPEG Improved JPEG EZDCT w/o ac STQ STQ + Haar

(b/p) Barb. Lena Barb. Lena Barb. Lena Barb. Lena Barb. Lena

0.25 25.2 31.6 26.0 31.9 25.4 30.7 25.9 31.2 26.4 32.3

0.50 28.3 34.9 30.1 35.5 29.4 34.8 29.7 35.4 30.2 35.6

0.75 31.0 36.6 33.0 37.5 32.5 37.1 32.1 37.0 32.3 37.2

1.00 33.1 37.9 35.2 38.8 34.9 38.7 34.8 38.8 34.9 39.0

Table 1: PSNR's for baseline JPEG[2], improved JPEG[5], EZDCT with no arithmetic

coding[6], and our signi�cance tree quantization scheme.

5 Conclusion

Signi�cance tree quantization provides an e�ective mechanism for exploiting coe�cient in-

terdependencies in both DCT-based and wavelet-based coders. This performance can be

enhanced signi�cantly by optimized signi�cance tree design. Our optimization procedure

9



yields a fully embedded, low-complexity DCT-based coder that has signi�cantly better per-

formance than baseline JPEG.
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