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Wavelet-based Image Coding:
An Overview

Geoffrey M. Davis
Aria Nosratinia

ABSTRACT This paper presents an overview of wavelet-based image cod-
ing. We develop the basics of image coding with a discussion of vector quan-
tization. We motivate the use of transform coding in practical settings, and
describe the properties of various decorrelating transforms. We motivate
the use of the wavelet transform in coding using rate-distortion considera-
tions as well as approximation-theoretic considerations. Finally, we give an
overview of current coders in the literature.

1 Introduction

Digital imaging has had an enormous impact on industrial applications and
scientific projects. It is no surprise that image coding has been a subject of
great commercial interest. The JPEG image coding standard has enjoyed
widespread acceptance, and the industry continues to explore its various
implementation issues. Efforts are underway to incorporate recent research
findings in image coding into a number of new standards, including those
for image coding (JPEG 2000), video coding (MPEG-4, MPEG-7), and
video teleconferencing (H.263+).
In addition to being a topic of practical importance, the problems studied

in image coding are also of considerable theoretical interest. The problems
draw upon and have inspired work in information theory, applied harmonic
analysis, and signal processing. This paper presents an overview of multi-
resolution image coding, arguably the most fruitful and successful direction
in image coding, in the light of the fundamental principles in probability
and approximation theory.

1.1 Image Compression

An image is a positive function on a plane. The value of this function
at each point specifies the luminance or brightness of the picture at that
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point.1 Digital images are sampled versions of such functions, where the
value of the function is specified only at discrete locations on the image
plane, known as pixels. The value of the luminance at each pixel is repre-
sented to a pre-defined precision M . Eight bits of precision for luminance
is common in imaging applications. The eight-bit precision is motivated by
both the existing computer memory structures (1 byte = 8 bits) as well as
the dynamic range of the human eye.
The prevalent custom is that the samples (pixels) reside on a rectangular

lattice which we will assume for convenience to be N ×N . The brightness
value at each pixel is a number between 0 and 2M −1. The simplest binary
representation of such an image is a list of the brightness values at each
pixel, a list containingN2M bits. Our standard image example in this paper
is a square image with 512 pixels on a side. Each pixel value ranges from 0
to 255, so this canonical representation requires 5122×8 = 2, 097, 152 bits.
Image coding consists of mapping images to strings of binary digits.

A good image coder is one that produces binary strings whose lengths
are on average much smaller than the original canonical representation of
the image. In many imaging applications, exact reproduction of the image
bits is not necessary. In this case, one can perturb the image slightly to
obtain a shorter representation. If this perturbation is much smaller than
the blurring and noise introduced in the formation of the image in the first
place, there is no point in using the more accurate representation. Such
a coding procedure, where perturbations reduce storage requirements, is
known as lossy coding. The goal of lossy coding is to reproduce a given
image with minimum distortion, given some constraint on the total number
of bits in the coded representation.
But why can images be compressed on average? Suppose for example

that we seek to efficiently store photographs of all natural scenes. In prin-
ciple, we can enumerate all such pictures and represent each image by its
associated index. Assume we position hypothetical cameras at the vantage
point of every atom in the universe (there are roughly 1080 of them), and
with each of them take pictures in one trillion directions, with one trillion
magnifications, exposure settings, and depths of field, and repeat this pro-
cess one trillion times during each year in the past 10,000 years (once every
0.003 seconds). This will result in a total of 10144 images. But 10144 ≈ 2479,
which means that any image in this enormous ensemble can be represented
with only 479 bits, or less than 60 bytes!
This collection includes any image that a modern human eye has ever

seen, including artwork, medical images, and so on, because we include
pictures of everything in the universe from essentially every vantage point.

1Color images are a generalization of this concept, and are represented by a three-

dimensional vector function on a plane. In this paper, we do not explicitly treat color
images, but most of the results can be directly extended to color images.
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And yet the collection can be conceptually represented with a small number
of bits. The remaining vast majority of the 2512×512×8 ≈ 10600,000 possible
images in the canonical representation are not of general interest, because
they contain little or no structure, and are noise-like.
While the above conceptual exercise is intriguing, it is also entirely im-

practical. Indexing and retrieval from a set of size 10144 is completely out
of the question. However, the example illustrates the two main properties
that image coders exploit. First, only a small fraction of the possible images
in the canonical representation are likely to be of interest. Entropy coding
can yield a much shorter image representation on average by using short
code words for likely images and longer code words for less likely images.2

Second, in our initial image gathering procedure we sample a continuum
of possible images to form a discrete set. The reason we can do so is that
most of the images that are left out are visually indistinguishable from im-
ages in our set. We can gain additional reductions in stored image size by
discretizing our database of images more coarsely, a process called quanti-
zation. By mapping visually indistinguishable images to the same code, we
reduce the number of code words needed to encode images, at the price of
a small amount of distortion.
It is possible to quantize each pixel separately, a process known as scalar

quantization. Quantizing a group of pixels together is known as vector quan-
tization, or VQ. Vector quantization can, in principle, capture the maxi-
mum compression that is theoretically possible. In Section 2.1 we review
the basics of vector quantization, its optimality conditions, and underlying
reasons for its powers of compression.
Although VQ is a very powerful theoretical paradigm, it can achieve op-

timality only asymptotically as its dimensions increase. But the computa-
tional cost and delay also grow exponentially with dimensionality, limiting
the practicality of VQ. Due to these and other difficulties, most practi-
cal coding algorithms have turned to transform coding instead of high-
dimensional VQ. Transform coding consists of scalar quantization in con-
junction with a linear transform. This method captures much of the VQ
gain, with only a fraction of the effort. In Section 3, we present the funda-
mentals of transform coding. We use a second-order model to motivate the
use of transform coding, and derive the optimal transform.
The success of transform coding depends on how well the basis functions

of the transform represent the features of the signal. At present, One of the
most successful representations is the wavelet transform, which we present
in Section 4.2. One can interpret the wavelet transform as a special case
of a subband transform. This view is used to describe the mechanics of a
basic wavelet coder in Section 5.

2For example, mapping the ubiquitous test image of Lena Sjööblom (see Figure 17)
to a one-bit codeword would greatly compress the image coding literature.
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There is more to the wavelet transform than this subband transform
view, however. The theory underlying wavelets brings to bear a fundamen-
tally different perspective than the frequency-based subband framework.
The temporal properties of the wavelet transform have proved particularly
useful in motivating some of the most recent coders, which we describe in
sections 8 to 9. Finally, in Section 10 we discuss directions of current and
future research.
This paper strives to make its subject accessible to a wide audience, while

at the same time also portraying the latest developments in multi-resolution
image coding. To achieve that end, a fair amount of introductory material is
present, which the more advanced reader is encouraged to quickly navigate.

2 Quantization

At the heart of image compression is the idea of quantization and approx-
imation. While the images of interest for compression are almost always in
a digital format, it is instructive and more mathematically elegant to treat
the pixel luminances as being continuously valued. This assumption is not
far from the truth if the original pixel values are represented with a large
number of levels.
The role of quantization is to represent this continuum of values with a

finite — preferably small — amount of information. Obviously this is not
possible without some loss. The quantizer is a function whose set of output
values are discrete and usually finite (see Figure 1). Good quantizers are
those that represent the signal with a minimum distortion.
Figure 1 also indicates a useful view of quantizers as concatenation of

two mappings. The first map, the encoder, takes partitions of the x-axis to
the set of integers {−2,−1, 0, 1, 2}. The second, the decoder, takes integers
to a set of output values {x̂k}. We need to define a measure of distortion in
order to characterize “good” quantizers. We need to be able to approximate

x
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FIGURE 1. (Left) Quantizer as a function whose output values are discrete.
(Right) because the output values are discrete, a quantizer can be more simply
represented only on one axis.
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any possible value of x with an output value x̂k. Our goal is to minimize the
distortion on average, over all values of x. For this, we need a probabilistic
model for the signal values. The strategy is to have few or no reproduc-
tion points in locations at which the probability of the signal is negligible,
whereas at highly probable signal values, more reproduction points need to
be specified. While improbable values of x can still happen — and will be
costly — this strategy pays off on average. This is the underlying princi-
ple behind all signal compression, and will be used over and over again in
different guises.
A quantizer is specified by its input partitions and its output reproduc-

tion points. It can be shown without much difficulty [1] that an optimal
quantizer satisfies the following conditions:

• Given the encoder (partitions), the best decoder is one that puts the
reproduction points {x̂i} on the centers of mass of the partitions.
This is known as the centroid condition

• Given the decoder (reproduction points), the best encoder is one that
puts the partition boundaries exactly in the middle of the reproduc-
tion points. In other words, each x is grouped with its nearest repro-
duction point. This is known as the nearest neighbor condition.

These concepts extend directly to the case of vector quantization. We
will therefore postpone the formal and detailed discussion of quantizer op-
timality until Section 2.2, where it will be explored in the full generality.

2.1 Vector Quantization

Shannon’s source coding theorem [2] imposes theoretical limits on the per-
formance of compression systems. According to this result, under a distor-
tion constraint, the output of a given source cannot be compressed beyond
a certain point. The set of optimal rate-distortion pairs form a convex
function whose shape is a characteristic of the individual source. Although
Shannon’s results are not constructive, they do indicate that optimality
cannot be achieved unless input data samples are encoded in blocks of
increasing length, in other words, as vectors.
Vector quantization (VQ) is the generalization of scalar quantization

to the case of a vector. The basic structure of a VQ is essentially the
same as scalar quantization, and consists of an encoder and a decoder. The
encoder determines a partitioning of the input vector space and to each
partition assigns an index, known as a codeword. The set of all codewords
is known as a codebook. The decoder maps the each index to a reproduction
vector. Combined, the encoder and decoder map partitions of the space to
a discrete set of vectors.
Although vector quantization is an extremely powerful tool, the compu-

tational and storage requirements become prohibitive as the dimensionality
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of the vectors increase. Memory and computational requirements have mo-
tivated a wide variety of constrained VQ methods. Among the most promi-
nent are tree structured VQ, shape-gain VQ, classified VQ, multistage VQ,
lattice VQ, and hierarchical VQ [1].
There is another important consideration that limits the practical use of

VQ in its most general form: The design of the optimal quantizer requires
knowledge of the underlying probability density function for the space of
images. While we may claim empirical knowledge of lower order joint prob-
ability distributions, the same is not true of higher orders. A training set is
drawn from the distribution we are trying to quantize, and is used to drive
the algorithm that generates the quantizer. As the dimensionality of the
model is increased, the amount of data available to estimate the density
in each bin of the model decreases, and so does the reliability of the p.d.f.
estimate.3 The issue is commonly known as “the curse of dimensionality”.
Instead of accommodating the complexity of VQ, many compression sys-

tems opt to move away from it and employ techniques that allow them to
use sample-wise or scalar quantization more effectively. In the remainder of
this section we discuss properties of optimal vector quantizers and their ad-
vantages over scalar quantizers. The balance of the paper will examine ways
of obtaining some of the benefits of vector quantizers while maintaining the
low complexity of scalar quantizers.

2.2 Optimal Vector Quantizers

Optimal vector quantizers are not known in closed form except in a few
trivial cases. However, two necessary conditions for optimality provide in-
sights into the structure of these optimal quantizers. These conditions also
form the basis of an iterative algorithm for designing quantizers.
Let pX(x) be the probability density function for the random variableX

we wish to quantize. Let D(x,y) be an appropriate distortion measure. Like
scalar quantizers, vector quantizers are characterized by two operations, an
encoder and a decoder. The encoder is defined by a partition of the range
of X into sets Pk. All realizations of X that lie in Pk will be encoded to k
and decoded to x̂k. The decoder is defined by specifying the reproduction
value x̂k for each partition Pk.
A quantizer that minimizes the average distortion D must satisfy the

following conditions:

1. Nearest neighbor condition: Given a set of reconstruction values {x̂k},
the partition of the values of X into sets Pk is the one for which

3Most existing techniques do not estimate the p.d.f. to use it for quantization, but
rather use the data directly to generate the quantizer. However, the reliability problem

is best pictured by the p.d.f. estimation exercise. The effect remains the same with the
so-called direct or data-driven methods.
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FIGURE 2. A Voronoi Diagram

each value x is mapped by the encoding and decoding process to the
nearest reconstruction value. The optimal partitions Pk given the
reconstruction values {x̂k} are given by

Pk = {x : D(x, x̂k) ≤ D(x, x̂j) for j 	= k}. (1.1)

2. Centroid condition: Given a partition of the range of X into sets
Pk, the optimal reconstruction values values X̂k are the generalized
centroids of the sets Pk. They satisfy

x̂k = arg min
∫
Pk

pX(z)D(z, x̂k)dz. (1.2)

With the squared error distortion, the generalized centroid corre-
sponds to the pX(x)-weighted centroid.

The nearest neighbor condition places constraints on the structure of
the partitions. We assume an distance function of the form D(x,y) =
‖x − y‖r where the norm is the Euclidean distance. Suppose we have two
N -dimensional reconstruction points x̂1 and x̂2. Partition P1 will consist
of the points closer to x̂1 than to x̂2, and partition P2 will consist of the
points closer to x̂2 than to x̂1. These two sets partition R

N by a hyperplane.
Additional reconstruction points result in further partitions of space by
hyperplanes. The result is a partition into convex polytopes called Voronoi
cells. A sample partition of the plane into Voronoi cells is shown in Figure
2.
Vector quantizers can be optimized using an iterative procedure called

the Generalized Lloyd algorithm (GLA). This algorithm starts with n initial
set of reconstruction values {x̂k}n

k=1. The algorithm proceeds as follows:

1. Optimize the encoder given the current decoder. Using the current set
of reconstruction values {x̂k}, divide a training set into partitions Pk

according to the nearest neighbor condition. This gives an optimal
partitioning of the training data given the reconstruction values.



8 Geoffrey M. Davis, Aria Nosratinia

√
2D

√
2σ

FIGURE 3. Quantization as a sphere covering problem.

2. Optimize the decoder given the current encoder. Set the reconstruction
values x̂k to the generalized centroids of the sets Pk. We now have
optimal reconstruction values for the sets Pk.

3. If the values x̂k have not converged, go to step 1.

The Generalized Lloyd algorithm (GLA) is a descent. Each step either
reduces the average distortion or leaves it unchanged. For a finite train-
ing set, the distortion can be shown to converge to a fixed value in a finite
number of iterations. The GLA does not guarantee a globally optimal quan-
tizer, as there may be other solutions of the necessary conditions that yield
smaller distortion. Nonetheless, under mild conditions the algorithm does
yield a locally optimal quantizer, meaning that small perturbations in the
sets and in the reconstruction values increase the average distortion [3].
The GLA together with stochastic relaxation techniques can be used to
obtain globally optimal solutions [4].

2.3 Sphere Covering and Density Shaping

The problem of finding optimal quantizers is closely related to the problem
of sphere-covering. An example in 2-D is illustrative. Suppose we want to
use R bits per symbol to quantize a vector X = (X1, X2) of independent,
identically distributed (i.i.d.) Gaussian random variables with mean zero
and variance σ2. The realizations of X will have an average length of

√
2σ,

and most of the realizations of X will lie inside a circle of radius
√
2σ. Our

2R bits are sufficient to specify that X lies in one of 22R quantizer cells.
The goal, then, is to cover a circle of radius

√
2σ with 22R quantizer cells

that have the minimum average distortion.
For the squared error distortion metric, the distortion of the in each

partition Pk is approximately proportional to the second moment of the
partition, the integral

∫
Pk
(x−x̂k)2dx. The lowest errors for a given rate are
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obtained when the ratios of the second moments of the partitions to their
volumes is small. Because of the nearest neighbor condition, our partitions
will be convex polytopes. We can get a lower bound on the distortion by
considering the case of spherical (circular in our 2-D example) partitions,
since every convex polytope has a second moment greater than that of a
sphere of the same volume.
Figure 3 illustrates this covering problem for R = 2. Most realizations

of X lie in the gray circle of radius
√
2σ. We want to distribute 22R = 16

reconstruction values so that almost all values of X are within a distance
of

√
2D of a reconstruction value. The average squared error for X will be

roughly 2D. Since each X corresponds to two symbols, the average per-
symbol distortion will be roughly D. Because polytopal partitions cover
the circle less efficiently than do the circles, this distortion per symbol of
D provides a lower limit on our ability to quantize X.4

In n dimensions, covering a sphere of radius
√
nσ with 2nR smaller

spheres requires that the smaller spheres have a radius of at least
√
nσ2−R.

Hence our sphere covering argument suggests that for i.i.d. Gaussian ran-
dom variables, the minimum squared error possible using R bits per symbol
is D(R) = σ22−2R. A more rigorous argument shows that this is in fact the
case [5].
The performance of vector quantizers in n dimensions is determined in

part by how closely we can approximate spheres with n-dimensional con-
vex polytopes [6]. When we quantize vector components separately using
scalar quantizers, the resulting Voronoi cells are all rectangular prisms,
which only poorly approximate spheres. Consider the case of coding 2 uni-
formly distributed random variables. If we scalar quantize both variables,
we subdivide space into squares. A hexagonal partition more effectively
approximates a partition of the plane into 2-spheres, and accordingly (ig-
noring boundary effects), the squared error from the hexagonal partition
is 0.962 times that of the square partition for squares and hexagons of
equal areas. The benefits of improved spherical approximations increase
in higher dimensions. In 100 dimensions, the optimal vector quantizer for
uniform densities has an error of roughly 0.69 times that of the optimal
scalar quantizer for uniform densities, corresponding to a PSNR gain of 1.6
dB [6].
Fejes Toth [7] has shown that the optimal vector quantizer for a uniform

density in 2 dimensions is given by a hexagonal lattice. The problem is
unsolved in higher dimensions, but asymptotic results exist. Zador [8] has
shown that for the case of asymptotically high quantizer cell densities, the
optimal cell density for a random vector X with density function pX(x) is

4Our estimates of distortion are a bit sloppy in low dimensions, and the per-symbol
distortion produced by our circle-covering procedure will be somewhat less than D. In

higher dimensions, however, most of a sphere’s mass is concentrated in a thin rind just
below the surface so we can ignore the interiors of spheres.
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FIGURE 4. The leftmost figure shows a probability density for a two-dimensional
vectorX. The realizations ofX are uniformly distributed in the shaded areas. The
center figure shows the four reconstruction values for an optimal scalar quantizer
for X with expected squared error 1

12 . The figure on the right shows the two
reconstruction values for an optimal vector quantizer forX with the same expected
error. The vector quantizer requires 0.5 bits per sample, while the scalar quantizer
requires 1 bit per sample.

given by
pX(x)

n
n+2∫

pX(y)
n

n+2 dy
. (1.3)

In contrast, the density obtained for optimal scalar quantization of the
marginals of X is ∏

k pXk(x)
1
3∏

k

∫
pXk(y)

1
3 dy

, (1.4)

where pXk (x)’s are marginal densities for the components of X. Even if the
components Xk are independent, the resulting bin density from optimal
scalar will still be suboptimal for the vector X. The increased flexibility of
vector quantization allows improved quantizer bin density shaping.

2.4 Cross Dependencies

The greatest benefit of jointly quantizing random variables is that we can
exploit the dependencies between them. Figure 4 shows a two-dimensional
vector X = (X1, X2) that is distributed uniformly over the squares [0, 1]×
[0, 1] and [−1, 0]× [−1, 0]. The marginal densities for X1 and X2 are both
uniform on [−1, 1]. We now hold the expected distortion fixed and compare
the cost of encoding X1 and X2 as a vector, to the cost of encoding these
variables separately. For an expected squared error of 1

12
, the optimal scalar

quantizer for both X1 and X2 is the one that partitions the interval [−1, 1]
into the subintervals [−1, 0) and [0, 1]. The cost per symbol is 1 bit, for a
total of 2 bits for X. The optimal vector quantizer with the same average
distortion has cells that divides the square [−1, 1]× [−1, 1] in half along
the line y = −x. The reconstruction values for these two cells are x̂a =
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(−1
2 ,−1

2 ) and x̂b = (12 ,
1
2 ). The total cost per vector X is just 1 bit, only

half that of the scalar case.
Because scalar quantizers are limited to using separable partitions, they

cannot take advantage of dependencies between random variables. This is a
serious limitation, but we can overcome it in part through a preprocessing
step consisting of a linear transform. We discuss transform coders in detail
in the next section.

2.5 Fractional Bitrates

In scalar quantization, each input sample is represented by a separate code-
word. Therefore, the minimum bitrate achievable is one bit per sample, be-
cause our symbols cannot be any shorter than one bit. Since each symbol
can only have an integer number of bits, the only way to generate fractional
bitrates per sample is to code multiple samples at once, as is done in vec-
tor quantization. A vector quantizer coding N -dimensional vectors using a
K-member codebook can achieve a rate of (log2 K)/N bits per sample.
The only way of obtaining the benefit of fractional bitrates with scalar

quantization is to process the codewords jointly after quantization. Useful
techniques to perform this task include arithmetic coding, run-length cod-
ing, and zerotree coding. All these methods find ways to assign symbols
to groups of samples, and are instrumental in the effectiveness of image
coding. We will discuss these techniques in the upcoming sections.

3 Transform Coding

A great part of the difference in the performance of scalar and vector quan-
tizers is due to VQ’s ability to exploit dependencies between samples. Direct
scalar quantization of the samples does not capture this redundancy, and
therefore suffers. Transform coding allows scalar quantizers to make use of a
substantial fraction of inter-pixel dependencies. Transform coders perform-
ing a linear pre-processing step that eliminates cross-correlation between
samples. Transform coding enables us to obtain some of the benefits of
vector quantization with much lower complexity.
To illustrate the usefulness of linear pre-processing, we consider a toy

image model. Images in our model consist of two pixels, one on the left
and one on the right. We assume that these images are realizations of a
two-dimensional random vector X = (X1, X2) for which X1 and X2 are
identically distributed and jointly Gaussian. The identically distributed
assumption is a reasonable one, since there is no a priori reason that pixels
on the left and on the right should be any different. We know empirically
that adjacent image pixels are highly correlated, so let us assume that the
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FIGURE 5. Left: Correlated Gaussians of our image model quantized with optimal
scalar quantization. Many reproduction values (shown as white dots) are wasted.
Right: Decorrelation by rotating the coordinate axes. Scalar quantization is now
much more efficient.

autocorrelation matrix for these pixels is

E[XXT ] =
[
1 0.9
0.9 1

]
(1.5)

By symmetry, X1 and X2 will have identical quantizers. The Voronoi cells
for this scalar quantization are shown on the left in Figure 5. The figure
clearly shows the inefficiency of scalar quantization: most of the probability
mass is concentrated in just five cells. Thus a significant fraction of the bits
used to code the bins are spent distinguishing between cells of very low
probability. This scalar quantization scheme does not take advantage of
the coupling between X1 and X2.
We can remove the correlation between X1 andX2 by applying a rotation

matrix. The result is a transformed vector Y given by

Y =
1√
2

[
1 1
1 −1

] [
X1

X2

]
(1.6)

This rotation does not remove any of the variability in the data. What
it does is to pack that variability into the variable Y1. The new variables
Y1 and Y2 are independent, zero-mean Gaussian random variables with
variances 1.9 and 0.1, respectively. By quantizing Y1 finely and Y2 coarsely
we obtain a lower average error than by quantizing X1 and X2 equally.
In the remainder of this section we will describe general procedures for
finding appropriate redundancy-removing transforms, and for optimizing
related quantization schemes.
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3.1 The Karhunen-Loève transform

We can remove correlations between pixels using an orthogonal linear trans-
form called the Karhunen-Loève transform, also known as the Hotelling
transform. Let X be a random vector that we assume has zero-mean and
autocorrelation matrix RX . Our goal is to find a matrix A such that the
components of Y = AX will be uncorrelated. The autocorrelation matrix
for Y will be diagonal and is given by RY = E(AX)(AX)T = ARXAT .
The matrix RX is symmetric and positive semidefinite, hence A is the ma-
trix whose rows are the eigenvectors of RX. We order the rows of A so that
RY = diag(λ0, λ1, . . . , λN−1) where λ0 ≥ λ1 ≥ ... ≥ λN−1 ≥ 0.
The following is a commonly quoted result regarding the optimality of

Karhunen-Loève transform.

Theorem 1 Suppose that we truncate a transformed random vector AX,
keeping m out of the N coefficients and setting the rest to zero, Then among
all linear transforms, the Karhunen-Loève transform provides the best ap-
proximation in the mean square sense to the original vector.

Proof: We first express the process of forming a linear approximation
to a random vector X from m transform coefficients as a set of matrix
operations. We write the transformed version of X as

Y = U X.

We multiply Y by a matrix Im that retains the first m components of Y
and sets to zero the last N −m components.

Ŷ = Im Y

Finally, we reconstruct an approximation to X from the truncated set of
transform coefficients, obtaining

X̂ = V Ŷ.

The goal is to show that the squared error E‖X− X̂‖2 is a minimum when
the matrices U and V are the Karhunen-Loève transform and its inverse,
respectively.
We can decompose any X into a component XN in the null-space of the

matrix U Im V and a component XR in the range of U Im V. These
components are orthogonal, so we have

E‖X− X̂‖2 = E‖XR − X̂‖2 +E‖XN‖2. (1.7)

We assume without loss of generality that the matrices U and V are full
rank. The null-space of our approximation is completely determined by
our choice of U. Hence we are free to choose V to minimize E‖X̂−XR‖2.
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Setting V = U−1 gives ‖X̂ − XR‖2 = 0, thus providing the necessary
minimization.
Now we need to find the U that minimizes E‖XN‖2. We expand

E‖X− X̂‖2 = E[XT (I− U−1ImU)T (I −U−1ImU)X]. (1.8)

We now show that the requisite matrix U is orthogonal. We first factor
U−1 into the product of an orthogonal matrix Q and an upper triangular
matrix S. After some algebra, we find that

E‖X− X̂‖2 = E[XTQ(I− Im)QTX] + E[XTQBT BQT X], (1.9)

where B = 0 if and only if S is diagonal. The second term in (1.9) is
always positive, since BTB is positive semidefinite. Thus, an orthogonal U
provides the best linear transform.
The matrix (I−UT ImU) performs an orthogonal projection of X onto a

subspace of dimension N−m. We need to find U such that the variation of
X is minimized in this subspace. The energy of the projection of X onto a
k-dimensional subspace spanned by orthogonal vectors q1, . . . ,qk is given
by

E‖
k∑

j=1

qj
TXqj‖2 =

k∑
j=1

qj
TRXqj (1.10)

The one-dimensional subspace in which the projection of X has the small-
est expected energy is the subspace spanned by the vector that minimizes
the quadratic form qTRXq. This minimum is attained when q is the eigen-
vector of RX with the smallest eigenvalue.
In general, the k-dimensional subspace Pk in which the expected energy

of the projection of X is minimized is the space spanned by the eigenvec-
tors vN−k+1, . . . ,vN of RX corresponding to the k smallest eigenvalues
λN−k+1, . . . , λN . The proof is by induction. For simplicity we assume that
the eigenvalues λk are distinct.
We have shown above that P1 is in fact the space spanned by vN . Fur-

thermore, this space is unique because we have assumed the eigenvalues
are distinct. Suppose that the unique subspace Pk in which the expected
the energy of X is minimized is the space spanned by vN−k+1, . . . ,vN .
Now the subspace Pk+1 must contain a vector q that is orthogonal to Pk.
The expected energy of the projection of X onto Pk+1 is equal to the sum
of the expected energies of the projection onto q and the projection onto
the k-dimensional complement of q in Pk+1. The complement of q in Pk+1

must be Pk, since any other subspace would result in a larger expected
energy (note that this choice of subspace does not affect the choice of q
since q ⊥ Pk). Now q minimizes qTRXq over the span of v1, . . .vN−k.
The requisite q is vN−k, which gives us the desired result.
Retaining only the first m coordinates of the Karhunen-Loève transform

of X is equivalent to discarding the projection of X on the span of the
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eigenvectors vm+1, . . . ,vN. The above derivation shows that this projection
has the minimum expected energy of any N − m dimensional projection,
so the resulting expected error E‖X− X̂‖ is minimized.

�
While the former result is useful for developing intuition into signal ap-

proximations, it is not directly useful for compression purposes. In signal
compression, we cannot afford to keep even one of the signal components
exactly. Typically one or more components of the transformed signal are
quantized and indices of the quantized coefficients are transmitted to the
decoder. In this case it is desirable to construct transforms that, given a
fixed bitrate, will impose the smallest distortion on the signal. In the next
section we derive an optimal bit allocation strategy for transformed data.

3.2 Optimal bit allocation

Assuming the components of a random vector are to be quantized sepa-
rately, it remains to be determined how many levels should each of the
quantizers be given. Our goal is to get the most benefit out of a fixed bit
budget. In other words, each bit of information should be spent on the
quantizer that offers the biggest return in terms of reducing the overall
distortion. In the following, we formalize this concept, and will eventually
use it to formulate the optimal transform coder.
Suppose we have a set of k random variables, X1, ..., Xk, all zero-mean,

with variances E[Xi] = σ2
i . Assuming that the p.d.f. of each of the random

variables is known, we can design optimal quantizers for each variable for
any given number of quantization levels. The log of the number of quanti-
zation levels represents the rate of the quantizer in bits.
We assume a high-resolution regime in which the distortion is much

smaller than the input variance (Di � σ2
i ). One can then show [1] that

a quantizer with 2bi levels has distortion

Di(bi) ≈ hi σ
2
i 2

−2bi. (1.11)

Here hi is given by

hi =
1
12

{∫ ∞

−∞
[pXi (x)]

1/3 dx

}3

(1.12)

where pXi (x) denotes the p.d.f. of the i-th random variable. The optimal
bit allocation is therefore a problem of minimizing

k∑
i=1

hi σ
2
i 2

−2bi
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subject to the constraint
∑

bi = B. The following result is due to Huang
and Schultheiss [9], which we present without proof: the optimal bit assign-
ment is achieved by the following distribution of bits:

bi = b̄+
1
2
log2

σ2
i

ρ2
+
1
2
log2

hi

H
(1.13)

where
b̄ =

B

k

is the arithmetic mean of the bitrates,

ρ2 =

(
k∏

i=1

σ2
i

) 1
k

is the geometric mean of the variances, and H is the geometric mean of the
coefficients hi. This distribution will result in the overall optimal distortion

Dopt = kH ρ2 2−2b̄ (1.14)

Using this formula on the toy example at the beginning of this section,
if the transform in Equation (1.6) is applied to the random process char-
acterized by Equation (1.5), a gain of more than 7 dB in distortion will
be achieved. The resulting quantizer is shown on the right hand side of
Figure 4. We will next use Equation (1.14) to establish the optimality of
the Karhunen-Loève transform for Gaussian processes.

3.3 Optimality of the Karhunen-Loève Transform

Once the signal is quantized, the Karhunen-Loève transform is no longer
necessarily optimal. However, for the special case of a jointly Gaussian
signal, the K-L transform retains its optimality even in the presence of
quantization.

Theorem 2 For a zero-mean, jointly Gaussian random vector, among all
block transforms, the Karhunen-Loève transform minimizes the distortion
at a given rate.

Proof: Take an arbitrary orthogonal transformation on the Gaussian
random vector X, resulting in Y. Let σ2

i be the variance of the i-th trans-
form coefficient Yi. Then, according to the Huang and Schultheiss result,
the minimum distortion achievable for any transform is equal to

DT = E
[
||Y− Ŷ||2

]
= N hg 2−2b̄

(
N∏

i=1

σ2
i

) 1
N

(1.15)
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where hg =
√

3π
2
is the quantization coefficient for the Gaussian.

The key, then, is to find the transform that minimizes the product of the
transformed coefficient variances,

∏N
i=1 σ

2
i . Hadamard’s inequality [10] pro-

vides us with a way to find the minimum product. Hadamard’s inequality
states that for a positive semidefinite matrix, the product of the diagonal
elements is greater than or equal to the determinant of the matrix. Equality
is attained if and only if the matrix is diagonal.RY is positive semidefinite,
so we have

∏N
i=1 σ2

i ≥ det(RY). Hence

DT ≥ N hg 2−2b̄(detRY )
1
N = N hg 2−2b̄(detRX)

1
N (1.16)

with equality achieved only when RY is diagonal. Because the Karhunen-
Loève transform diagonalizes RY, it provides the optimal decorrelating
transform.

�

3.4 The Discrete Cosine Transform

While the Karhunen-Loève transform (KLT) has nice theoretical proper-
ties, there are significant obstacles to its use in practice. The first problem
is that we need to know the covariances for all possible pairs of pixels for
images of interest. This requires estimating an extremely large number of
parameters. If instead we make some stationarity assumptions and esti-
mate correlations from the image we wish to code, the transform becomes
image dependent. The amount of side information required to tell the de-
coder which transform to use is prohibitive. The second problem is that
the KLT is slow, requiring O(N4) operations to apply to an N ×N image.
We need instead to find transforms that approximately duplicate the prop-
erties of the KLT over the large class of images of interest, and that can be
implemented using fast algorithms.
The first step towards building an approximate K-L transform is noting

the Toeplitz structure of autocorrelation matrices for stationary processes.
Asymptotically, as the dimensions of a Toeplitz matrix increase, its eigen-
vectors converge to complex exponentials. In other words, regardless of the
second order properties of the random process, the Fourier transform di-
agonalizes the autocorrelation function asymptotically. Therefore, in finite
dimensions, the discrete Fourier transform (DFT) can serve as an approx-
imation to the Karhunen-Loève transform.
In practice, a close relative of the DFT, namely the Discrete Cosine

Transform (DCT) [11], is used to diagonalizeRX . The DCT has the form5

c(k, n) =

{ 1√
N

k = 0 , 0 ≤ n ≤ N − 1√
2
N
cos π(2n+1)k

2N
1 ≤ k ≤ N − 1 , 0 ≤ n ≤ N − 1 (1.17)

5Several slightly different forms of DCT exist. See [12] for more details.
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FIGURE 6. Zig-zag scan of DCT coefficients

The DCT has several advantages over the DFT. First, unlike the DFT,
the DCT is a real-valued transform that generates real coefficients from
real-valued data. Second, the ability of the DCT and the DFT to pack signal
energy into a small number of coefficients is a function of the global smooth-
ness of these signals. The DFT is equivalent to a discrete-time Fourier
transform (DTFT) of a periodically extended version of the block of data
under consideration. This block extension in general results in the creation
of artificial discontinuities at block boundaries and reduces the DFT’s ef-
fectiveness at packing image energy into the low frequencies. In contrast,
the DCT is equivalent to the DTFT of the repetition of the symmetric ex-
tension of the data, which is by definition continuous. The lack of artificial
discontinuities at the edges gives the DCT better energy compaction prop-
erties, and thus makes it a better approximation to the KLT for signals of
interest.6

The DCT is the cornerstone of the JPEG image compression standard. In
the baseline version of this standard, the image is divided into a number of
8×8 pixel blocks, and the block DCT is applied to each block. The matrix of
DCT coefficients is then quantized by a bank of uniform scalar quantizers.
While the standard allows direct specification of these quantizers by the
encoder, it also provides a “default” quantizer bank, which is often used
by most encoders. This default quantizer bank is carefully designed to
approach optimal rate-distortion for a large class of visual signals. Such
a quantization strategy is also compatible with the human visual system,
because it quantizes high-frequency signals more coarsely, and the human
eye is less sensitive to errors in the high frequencies.
The quantized coefficients are then zig-zag scanned as shown in Figure 6

and entropy-coded. The syntax of JPEG for transmitting entropy coded
coefficients makes further use of our a priori knowledge of the likely values
of these coefficients. Instead of coding and transmitting each coefficient

6This is true only because the signals of interest are generally lowpass. It is perfectly

possible to generate signals for which the DFT performs better energy compaction than
DCT. However, such signals are unlikely to appear in images and other visual contexts.
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FIGURE 7. Example of decimation and interpolation on a sampled signal, with
M = 3.

separately, the encoder transmits the runlength of zeros before the next
nonzero coefficient, jointly with the value of the next non-zero coefficient.
It also has a special “End of Block” symbol that indicates no more non-zero
coefficients remain in the remainder of the zig-zag scan. Because large runs
of zeros often exist in typical visual signals, usage of these symbols gives
rise to considerable savings in bitrate.
Note that coding zeros jointly, while being simple and entirely practical,

is outside the bounds of scalar quantization. In fact, run-length coding of
zeros can be considered a special case of vector quantization. It captures
redundancies beyond what is possible even with an optimal transform and
optimal bitrate allocation. This theme of jointly coding zeros re-emerges
later in the context of zerotree coding of wavelet coefficients, and is used
to generate very powerful coding algorithms.
DCT coding with zig-zag scan and entropy coding is remarkably efficient.

But the popularity of JPEG owes at least as much to the computational
efficiency of the DCT as to its performance. The source of computational
savings in fast DCT algorithms are folding of multiplies, as well as the re-
dundancies inherent in a 2-D transform. We refer the reader to the extensive
literature for further details [12, 13, 14, 15].

3.5 Subband transforms

The Fourier-based transforms, including the DCT, are a special case of
subband transforms. A subband transformer is a multi-rate digital signal
processing system. There are three elements to multi-rate systems: filters,
interpolators, and decimators. Decimation and interpolation operations are
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illustrated in Figure 7. A decimator is is an element that reduces the sam-
pling rate of a signal by a factorM . For of every M samples, we retain one
sample and discard the rest. An interpolator increases the sampling rate of
a signal by a factor M by introducing M − 1 zero samples in between each
pair samples of the original signal. Note that “interpolator” is somewhat of
a misnomer, since these “interpolators” only add zeros in between samples
and make for very poor interpolation by themselves.
A subband system, as shown in Figure 8, consists of two sets of filter

banks, along with decimators and interpolators. On the left side of the
figure we have the forward stage of the subband transform. The signal
is sent through the input of the first set of filters, known as the analysis
filter bank. The output of these filters is passed through decimators, which
retain only one out of every M samples. The right hand side of the figure
is the inverse stage of the transform. The filtered and decimated signal is
first passed through a set of interpolators. Next it is passed through the
synthesis filter bank. Finally, the components are recombined.
The combination of decimation and interpolation has the effect of zeroing

out all but one out ofM samples of the filtered signal. Under certain condi-
tions, the original signal can be reconstructed exactly from this decimated
M -band representation. The ideas leading to the perfect reconstruction
conditions were discovered in stages by a number of investigators, includ-
ing Croisier et al. [16], Vaidyanathan [17], Smith and Barnwell [18, 19] and
Vetterli [20, 21]. For a detailed presentation of these developments, we refer
the reader to the comprehensive texts by Vaidyanathan [22] and Vetterli
and Kovačević [23].
We have seen in our discussion of quantization strategies that we need to

decorrelate pixels in order for scalar quantization to work efficiently. The
Fourier transform diagonalizes Toeplitz matrices asymptotically as matrix
dimensions increase. In other words, it decorrelates pixels as the length
of our pixel vectors goes to infinity, and this has motivated the use of
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FIGURE 9. Inverse water filling of the spectrum for the rate-distortion function
of a Gaussian source with memory.

Fourier-type transforms like DCT. Filter banks provide an alternative way
to approximately decorrelate pixels, and in general have certain advantages
over the Fourier transform.
To understand how filterbanks decorrelate signals, consider the following

simplified analysis: Assume we have a Gaussian source with memory, i.e.
correlated, with power spectral density (p.s.d.) ΦX(ω). The rate-distortion
function for this source is [24]

D(θ) =
1
2π2

∫
ω

min(θ,ΦX(ω))dω (1.18)

R(θ) =
1
4π2

∫
ω

max
(
0, log(

ΦX(ω)
θ

)
)

dω (1.19)

Each value of θ produces a point on the rate-distortion curve. The goal
of any quantization scheme is to mimic the rate-distortion curve, which
is optimal. Thus, a simple approach is suggested by the equations above:
at frequencies where signal power is less than θ, it is not worthwhile to
spend any bits, therefore all the signal is thrown away (signal power =
noise power). At frequencies where signal power is greater than θ, enough
bitrate is assigned so that the noise power is exactly θ, and signal power
over and above θ is preserved. This procedure is known as inverse water-
filling. The solution is illustrated in Figure 9.
Of course it is not practical to consider each individual frequency sepa-

rately, since there are uncountably many of them. However, it can be shown
that instead of considering individual frequencies, one can consider bands
of frequencies together, as long as the power spectral density within each
band is constant. This is where filter banks come into the picture.
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FIGURE 10. Spectral power density corresponding to an exponential correlation
profile.

Filter banks are used to divide signals into frequency bands, or subbands.
For example, a filter bank with two analysis filters can be used to divide a
signal into highpass and lowpass components, each with half the bandwidth
of the original signal. We can approximately decorrelate a Gaussian process
by carving its power spectrum into flat segments, multiplying each segment
by a suitable factor, and adding the bands together again to obtain an
overall flat (white) p.s.d.
We see that both filter banks and Fourier transform are based on fre-

quency domain arguments. So is one superior the other, and why? The an-
swer lies in the space-frequency characteristics of the two methods. Fourier
bases are very exact in frequency, but are spatially not precise. In other
words, the energy of the Fourier basis elements is concentrated in one fre-
quency, but spread over all space. This would not be a problem if image
pixels were individually and jointly Gaussian, as assumed in our analy-
sis. However, in reality, pixels in images of interest are generally not jointly
Gaussian, especially not across image discontinuities (edges). In contrast to
Fourier basis elements, subband bases not only have fairly good frequency
concentration, but also are spatially compact. If image edges are not too
closely packed, most of the subband basis elements will not intersect with
them, thus performing a better decorrelation on average.
The next question is: how should one carve the frequency spectrum to

maximize the benefits, given a fixed number of filter banks? A common
model for the autocorrelation of images [25] is that pixel correlations fall
off exponentially with distance. We have

RX(δ) := e−ω0|δ| , (1.20)

where δ is the lag variable. The corresponding power spectral density is
given by

ΦX(ω) =
2ω0

ω2
0 + (2πω)2

(1.21)
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This spectral density is shown in Figure 10. From the shape of this density
we see that in order to obtain segments in which the spectrum is flat, we
need to partition the spectrum finely at low frequencies, but only coarsely
at high frequencies. The subbands we obtain by this procedure will be ap-
proximately vectors of white noise with variances proportional to the power
spectrum over their frequency range. We can use an procedure similar to
that described for the KLT for coding the output. As we will see below,
this particular partition of the spectrum is closely related to the wavelet
transform.

4 Wavelets: A Different Perspective

4.1 Multiresolution Analyses

The discussion so far has been motivated by probabilistic considerations.
We have been assuming our images can be reasonably well-approximated
by Gaussian random vectors with a particular covariance structure. The
use of the wavelet transform in image coding is motivated by a rather
different perspective, that of approximation theory. We assume that our
images are locally smooth functions and can be well-modeled as piecewise
polynomials. Wavelets provide an efficient means for approximating such
functions with a small number of basis elements. This new perspective
provides some valuable insights into the coding process and has motivated
some significant advances.
We motivate the use of the wavelet transform in image coding using the

notion of a multiresolution analysis. Suppose we want to approximate a
continuous-valued square-integrable function f(x) using a discrete set of
values. For example, f(x) might be the brightness of a one-dimensional im-
age. A natural set of values to use to approximate f(x) is a set of regularly-
spaced, weighted local averages of f(x) such as might be obtained from the
sensors in a digital camera.
A simple approximation of f(x) based on local averages is a step function

approximation. Let φ(x) be the box function given by φ(x) = 1 for x ∈ [0, 1)
and 0 elsewhere. A step function approximation to f(x) has the form

Af(x) =
∑
n

fnφ(x− n), (1.22)

where fn is the height of the step in [n, n + 1). A natural value for the
heights fn is simply the average value of f(x) in the interval [n, n + 1).
This gives fn =

∫ n+1

n f(x)dx.
We can generalize this approximation procedure to building blocks other

than the box function. Our more generalized approximation will have the
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form
Af(x) =

∑
n

〈φ̃(x − n), f(x)〉φ(x− n). (1.23)

Here φ̃(x) is a weight function and φ(x) is an interpolating function cho-
sen so that 〈φ(x), φ̃(x − n)〉 = δ[n]. The restriction on φ(x) ensures that
our approximation will be exact when f(x) is a linear combination of the
functions φ(x − n). The functions φ(x) and φ̃(x) are normalized so that∫ |φ(x)|2dx = ∫ |φ̃(x)|2dx = 1. We will further assume that f(x) is periodic
with an integer period so that we only need a finite number of coefficients
to specify the approximation Af(x).
We can vary the resolution of our approximations by dilating and con-

tracting the functions φ(x) and φ̃(x). Let φj(x) = 2
j
2φ(2jx) and φ̃j(x) =

2
j
2 φ̃(2jx). We form the approximation Ajf(x) by projecting f(x) onto the
span of the functions {φj(x− 2−jk)}k∈Z, computing

Ajf(x) =
∑

k

〈f(x), φ̃j(x− 2−jk)〉φj(x − 2−jk). (1.24)

Let Vj be the space spanned by the functions {φj(x−2−jk)}. Our resolution
j approximation Ajf is simply a projection (not necessarily an orthogonal
one) of f(x) onto the span of the functions φj(x − 2−jk).
For our box function example, the approximation Ajf(x) corresponds to

an orthogonal projection of f(x) onto the space of step functions with step
width 2−j. Figure 11 shows the difference between the coarse approxima-
tion A0f(x) on the left and the higher resolution approximation A1f(x) on
the right. Dilating scaling functions give us a way to construct approxima-
tions to a given function at various resolutions. An important observation
is that if a given function is sufficiently smooth, the differences between
approximations at successive resolutions will be small.
Constructing our function φ(x) so that approximations at scale j are

special cases of approximations at scale j + 1 will make the analysis of
differences of functions at successive resolutions much easier. The function
φ(x) from our box function example has this property, since step functions
with width 2−j are special cases of step functions with step width 2−j−1.
For such φ(x)’s the spaces of approximations at successive scales will be
nested, i.e. we have Vj ⊂ Vj+1.
The observation that the differences Aj+1f−Ajf will be small for smooth

functions is the motivation for the Laplacian pyramid [26], a way of trans-
forming an image into a set of small coefficients. The 1-D analog of the
procedure is as follows: we start with an initial discrete representation of
a function, the N coefficients of Ajf . We first split this function into the
sum

Ajf(x) = Aj−1f(x) + [Ajf(x) − Aj−1f(x)]. (1.25)

Because of the nesting property of the spaces Vj , the difference Ajf(x) −
Aj−1f(x) can be represented exactly as a sum of N translates of the func-
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FIGURE 11. A continuous function f(x) (plotted as a dotted line) and box func-
tion approximations (solid lines) at two resolutions. On the left is the coarse
approximation A0f(x) and on the right is the higher resolution approximation
A1f(x).

tion φj(x). The key point is that the coefficients of these φj translates will
be small provided that f(x) is sufficiently smooth, and hence easy to code.
Moreover, the dimension of the space Vj−1 is only half that of the space
Vj , so we need only N

2
coefficients to represent Aj−1f . (In our box-function

example, the function Aj−1f is a step function with steps twice as wide as
Ajf , so we need only half as many coefficients to specify Aj−1f .) We have
partitioned Ajf into N difference coefficients that are easy to code and
N
2 coarse-scale coefficients. We can repeat this process on the coarse-scale
coefficients, obtaining N

2
easy-to-code difference coefficients and N

4
coarser

scale coefficients, and so on. The end result is 2N −1 difference coefficients
and a single coarse-scale coefficient.
Burt and Adelson [26] have employed a two-dimensional version of the

above procedure with some success for an image coding scheme. The main
problem with this procedure is that the Laplacian pyramid representation
has more coefficients to code than the original image. In 1-D we have twice
as many coefficients to code, and in 2-D we have 4

3 as many.

4.2 Wavelets

We can improve on the Laplacian pyramid idea by finding a more efficient
representation of the difference Dj−1f = Ajf − Aj−1f . The idea is that
to decompose a space of fine-scale approximations Vj into a direct sum
of two subspaces, a space Vj−1 of coarser-scale approximations and its
complement,Wj−1. This spaceWj−1 is a space of differences between coarse
and fine-scale approximations. In particular, Ajf −Aj−1f ∈ W j−1 for any
f . Elements of the space can be thought of as the additional details that
must be supplied to generate a finer-scale approximation from a coarse one.
Consider our box-function example. If we limit our attention to functions

on the unit interval, then the space Vj is a space of dimension 2j. We can
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FIGURE 13. The Haar scaling function and wavelet.

decompose Vj into the space Vj−1, the space of resolution 2−j+1 approxi-
mations, andWj−1, the space of details. Because Vj−1 is of dimension 2j−1,
Wj−1 must also have dimension 2j−1 for the combined space Vj to have
dimension 2j. This observation about the dimension ofWj provides us with
a means to circumvent the Laplacian pyramid’s problems with expansion.
Recall that in the Laplacian pyramid we represent the difference Dj−1f

as a sum ofN fine-scale basis functions φj(x). This is more information than
we need, however, because the space of functions Dj−1f is spanned by just
N
2 basis functions. Let c

j
k be the expansion coefficient 〈φ̃j(x− 2−jk), f(x)〉

in the resolution j approximation to f(x). For our step functions, each
coefficient cj−1

k is the average of the coefficients cj
2k and cj

2k+1 from the
resolution j approximation. In order to reconstruct Ajf from Aj−1f , we
only need the N

2 differences cj
2k+1 − cj

2k. Unlike the Laplacian pyramid,
there is no expansion in the number of coefficients needed if we store these
differences together with the coefficients for Aj−1f .
The differences cj

2k+1 − cj
2k in our box function example correspond

(up to a normalizing constant) to coefficients of a basis expansion of the
space of details Wj−1. Mallat has shown that in general the basis for
Wj consists of translates and dilates of a single prototype function ψ(x),
called a wavelet [27]. The basis for Wj is of the form ψj(x − 2−jk) where
ψj(x) = 2

j
2 ψ(x).
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Figure 13 shows the scaling function (a box function) for our box func-
tion example together with the corresponding wavelet, the Haar wavelet.
Figure 12 shows the function D0f(x), the difference between the approxi-
mations A1f(x) and A1f(x) from Figure 11. Note that each of the intervals
separated by the dotted lines contains a translated multiple of ψ(x).
The dynamic range of the differences D0f(x) in Figure 12 is much smaller

than that of A1f(x). As a result, it is easier to code the expansion coeffi-
cients of D0f(x) than to code those of the higher resolution approximation
A1f(x). The splitting A1f(x) into the sum A0f(x) + D0f(x) performs a
packing much like that done by the Karhunen-Loève transform. For smooth
functions f(x) the result of the splitting of A1f(x) into a sum of a coarser
approximation and details is that most of the variation is contained in A0f ,
and D0f is near zero. By repeating this splitting procedure, partitioning
A0f(x) into A−1f(x) + D−1f(x), we obtain the wavelet transform. The
result is that an initial function approximation Ajf(x) is decomposed into
the telescoping sum

Ajf(x) = Dj−1f(x) +Dj−2f(x) + . . .+Dj−nf(x) + Aj−nf(x). (1.26)

The coefficients of the differences Dj−kf(x) are easier to code than the
expansion coefficients of the original approximation Ajf(x), and there is
no expansion of coefficients as in the Laplacian pyramid.

4.3 Recurrence Relations

For the repeated splitting procedure above to be practical, we will need an
efficient algorithm for obtaining the coefficients of the expansions Dj−kf
from the original expansion coefficients for Ajf . A key property of our
scaling functions makes this possible.
One consequence of our partitioning of the space of resolution j approx-

imations, Vj , into a space of resolution j − 1 approximations Vj−1 and
resolution j − 1 details Wj−1 is that the scaling functions φ(x) possess
self-similarity properties. Because Vj−1 ⊂ Vj , we can express the function
φj−1(x) as a linear combination of the functions φj(x − n). In particular
we have

φ(x) =
∑

k

hkφ(2x− k). (1.27)

Similarly, we have

φ̃(x) =
∑

k

h̃kφ̃(2x− k)

ψ(x) =
∑

k

gkφ(2x− k)

ψ̃(x) =
∑

k

g̃kφ̃(2x− k). (1.28)
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These recurrence relations provide the link between wavelet transforms
and subband transforms. Combining ( 4.3) and ( 4.3) with ( 4.1), we ob-
tain a simple means for splitting the N expansion coefficients for Ajf into
the N

2 expansion coefficients for the coarser-scale approximationAj−1f and
the N

2 coefficients for the details D
j−1f . Both the coarser-scale approxima-

tion coefficients and the detail coefficients are obtained by convolving the
coefficients of Ajf with a filter and downsampling by a factor of 2. For the
coarser-scale approximation, the filter is a low-pass filter with taps given by
h̃−k. For the details, the filter is a high-pass filter with taps g̃−k. A related
derivation shows that we can invert the split by upsampling the coarser-
scale approximation coefficients and the detail coefficients by a factor of
2, convolving them with synthesis filters with taps hk and gk, respectively,
and adding them together.
We begin the forward transform with a signal representation in which

we have very fine temporal localization of information but no frequency lo-
calization of information. Our filtering procedure splits our signal into low-
pass and high-pass components and downsamples each. We obtain twice
the frequency resolution at the expense of half of our temporal resolution.
On each successive step we split the lowest frequency signal component
in to a low pass and high pass component, each time gaining better fre-
quency resolution at the expense of temporal resolution. Figure 14 shows
the partition of the time-frequency plane that results from this iterative
splitting procedure. As we discussed in Section 3.5, such a decomposition,
with its wide subbands in the high frequencies and narrow subbands at low
frequencies leads to effective data compression for a common image model,
a Gaussian random process with an exponentially decaying autocorrelation
function.
The recurrence relations give rise to a fast algorithm for splitting a fine-

scale function approximation into a coarser approximation and a detail
function. If we start with an N coefficient expansion Ajf , the first split
requires kN operations, where k depends on the lengths of the filters we use.
The approximation AJ−1 has N

2 coefficients, so the second split requires
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FIGURE 14. Partition of the time-frequency plane created by the wavelet trans-
form.
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kN
2 operations. Each successive split requires half as much work, so the

overall transform requires O(N) work.

4.4 Wavelet Transforms vs. Subband Decompositions

The wavelet transform is a special case of a subband transform, as the
derivation of the fast wavelet transform reveals. What, then, does the
wavelet transform contribute to image coding? As we discuss below, the
chief contribution of the wavelet transform is one of perspective. The math-
ematical machinery used to develop the wavelet transform is quite different
than that used for developing subband coders. Wavelets involve the analy-
sis of continuous functions whereas analysis of subband decompositions is
more focused on discrete time signals. The theory of wavelets has a strong
spatial component whereas subbands are more focused in the frequency
domain.
The subband and wavelet perspectives represent two extreme points in

the analysis of this iterated filtering and downsampling process. The filters
used in subband decompositions are typically designed to optimize the
frequency domain behavior of a single filtering and subsampling. Because
wavelet transforms involve iterated filtering and downsampling, the analysis
of a single iteration is not quite what we want. The wavelet basis functions
can be obtained by iterating the filtering and downsampling procedure an
infinite number of times. Although in applications we iterate the filtering
and downsampling procedure only a small number of times, examination
of the properties of the basis functions provides considerable insight into
the effects of iterated filtering.
A subtle but important point is that when we use the wavelet machin-

ery, we are implicitly assuming that the values we transform are actually
fine-scale scaling function coefficients rather than samples of some function.
Unlike the subband framework, the wavelet framework explicitly specifies
an underlying continuous-valued function from which our initial coefficients
are derived. The use of continuous-valued functions allows the use of pow-
erful analytical tools, and it leads to a number of insights that can be used
to guide the filter design process. Within the continuous-valued framework
we can characterize the types of functions that can be represented exactly
with a limited number of wavelet coefficients. We can also address issues
such as the smoothness of the basis functions. Examination of these is-
sues has led to important new design criteria for both wavelet filters and
subband decompositions.
A second important feature of the wavelet machinery is that it involves

both spatial as well as frequency considerations. The analysis of subband
decompositions is typically more focused on the frequency domain. Coef-
ficients in the wavelet transform correspond to features in the underlying
function in specific, well-defined locations. As we will see below, this ex-
plicit use of spatial information has proven quite valuable in motivating
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some of the most effective wavelet coders.

4.5 Wavelet Properties

There is an extensive literature on wavelets and their properties. See [28], [23],
or [29] for an introduction. Properties of particular interest for image com-
pression are the the accuracy of approximation , the smoothness, and the
support of these bases.
The functions φ(x) and ψ(x) are the building blocks from which we con-

struct our compressed images. When compressing natural images, which
tend contain locally smooth regions, it is important that these building
blocks be reasonably smooth. If the wavelets possess discontinuities or
strong singularities, coefficient quantization errors will cause these dis-
continuities and singularities to appear in decoded images. Such artifacts
are highly visually objectionable, particularly in smooth regions of images.
Procedures for estimating the smoothness of wavelet bases can be found
in [30] and [31]. Rioul [32] has found that under certain conditions that
the smoothness of scaling functions is a more important criterion than a
standard frequency selectivity criterion used in subband coding.
Accuracy of approximation is a second important design criterion that

has arisen from wavelet framework. A remarkable fact about wavelets is
that it is possible to construct smooth, compactly supported bases that can
exactly reproduce any polynomial up to a given degree. If a continuous-
valued function f(x) is locally equal to a polynomial, we can reproduce that
portion of f(x) exactly with just a few wavelet coefficients. The degree
of the polynomials that can be reproduced exactly is determined by the
number of vanishing moments of the dual wavelet ψ̃(x). The dual wavelet
ψ̃(x) has N vanishing moments provided that

∫
xkψ̃(x)dx = 0 for k =

0, . . . , N . Compactly supported bases for L2 for which ψ̃(x) hasN vanishing
moments can locally reproduce polynomials of degree N − 1.
The number of vanishing moments also determines the rate of conver-

gence of the approximationsAjf to the original function f as the resolution
goes to infinity. It has been shown that ‖f−Ajf‖ ≤ C2−jN‖f(N)‖ where N
is the number of vanishing moments of ψ̃(x) and f(N) is the Nth derivative
of f [33, 34, 35].
The size of the support of the wavelet basis is another important de-

sign criterion. Suppose that the function f(x) we are transforming is equal
to polynomial of degree N − 1 in some region. If ψ̃ has has N vanishing
moments, then any basis function for which the corresponding dual func-
tion lies entirely in the region in which f is polynomial will have a zero
coefficient. The smaller the support of ψ̃ is, the more zero coefficients we
will obtain. More importantly, edges produce large wavelet coefficients. The
larger ψ̃ is, the more likely it is to overlap an edge. Hence it is important
that our wavelets have reasonably small support.
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There is a tradeoff between wavelet support and the regularity and accu-
racy of approximation.Wavelets with short support have strong constraints
on their regularity and accuracy of approximation, but as the support is
increased they can be made to have arbitrary degrees of smoothness and
numbers of vanishing moments. This limitation on support is equivalent to
keeping the analysis filters short. Limiting filter length is also an important
consideration in the subband coding literature, because long filters lead to
ringing artifacts around edges.

5 A Basic Wavelet Image Coder

State-of-the-art wavelet coders are all derived from the transform coder
paradigm. There are three basic components that underly current wavelet
coders: a decorrelating transform, a quantization procedure, and an entropy
coding procedure. Considerable current research is being performed on all
three of these components. Before we discuss state-of-the-art coders in the
next sections, we will describe a basic wavelet transform coder and discuss
optimized versions of each of the components.7

5.1 Choice of Wavelet Basis

Deciding on the optimal wavelet basis to use for image coding is a difficult
problem. A number of design criteria, including smoothness, accuracy of
approximation, size of support, and filter frequency selectivity are known
to be important. However, the best combination of these features is not
known.
The simplest form of wavelet basis for images is a separable basis formed

from translations and dilations of products of one dimensional wavelets. Us-
ing separable transforms reduces the problem of designing efficient wavelets
to a one-dimensional problem, and almost all current coders employ sep-
arable transforms. Recent work of Sweldens and Kovačević [36] simplifies
considerably the design of non-separable bases, and such bases may prove
more efficient than separable transforms.
The prototype basis functions for separable transforms are φ(x)φ(y),

φ(x)ψ(y), ψ(x)φ(y), and ψ(x)ψ(y). Each step of the transform for such
bases involves two frequency splits instead of one. Suppose we have an
N × N image. First each of the N rows in the image is split into a low-
pass half and a high pass half. The result is an N × N

2
sub-image and an

N × N
2 high-pass sub-image. Next each column of the sub-images is split

into a low-pass and a high-pass half. The result is a four-way partition

7C++ source code for a coder that implements these components is available from
the web site http://www.cs.dartmouth.edu/∼gdavis/wavelet/wavelet.html.
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of the image into horizontal low-pass/vertical low-pass, horizontal high-
pass/vertical low-pass, horizontal low-pass/vertical high-pass, and horizon-
tal high-pass/vertical high-pass sub-images. The low-pass/low-pass sub-
image is subdivided in the same manner in the next step as is illustrated
in Figure 17.
Unser [35] shows that spline wavelets are attractive for coding appli-

cations based on approximation theoretic considerations. Experiments by
Rioul [32] for orthogonal bases indicate that smoothness is an important
consideration for compression. Experiments by Antonini et al [37] find that
both vanishing moments and smoothness are important, and for the filters
tested they found that smoothness appeared to be slightly more impor-
tant than the number of vanishing moments. Nonetheless, Vetterli and
Herley [38] state that “the importance of regularity for signal processing
applications is still an open question.” The bases most commonly used
in practice have between one and two continuous derivatives. Additional
smoothness does not appear to yield significant improvements in coding
results.
Villasenor et al [39] have systematically examined all minimum order

biorthogonal filter banks with lengths ≤ 36. In addition to the criteria
already mentioned, [39] also examines measures of oscillatory behavior and
of the sensitivity of the coarse-scale approximations Ajf(x) to translations
of the function f(x). The best filter found in these experiments was a 7/9-
tap spline variant with less dissimilar lengths from [37], and this filter is
one of the most commonly used in wavelet coders.
There is one caveat with regard to the results of the filter evaluation

in [39]. Villasenor et al compare peak signal to noise ratios generated by a
simple transform coding scheme. The bit allocation scheme they use works
well for orthogonal bases, but it can be improved upon considerably in
the biorthogonal case. This inefficient bit allocation causes some promising
biorthogonal filter sets to be overlooked.
For biorthogonal transforms, the squared error in the transform domain

is not the same as the squared error in the original image. As a result,
the problem of minimizing image error is considerably more difficult than
in the orthogonal case. We can reduce image-domain errors by performing
bit allocation using a weighted transform-domain error measure that we
discuss in section 5.5. A number of other filters yield performance com-
parable to that of the 7/9 filter of [37] provided that we do bit allocation
with a weighted error measure. One such basis is the Deslauriers-Dubuc
interpolating wavelet of order 4 [40, 41], which has the advantage of having
filter taps that are dyadic rationals. Both the spline wavelet of [37] and the
order 4 Deslauriers-Dubuc wavelet have 4 vanishing moments in both ψ(x)
andψ̃(x), and the basis functions have just under 2 continuous derivatives
in the L2 sense.
One new very promising set of filters has been developed by Balasingham

and Ramstad [42]. Their design procedure combines classical filter design
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x=0

x
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FIGURE 15. Dead-zone quantizer, with larger encoder partition around x = 0
(dead zone) and uniform quantization elsewhere.

techniques with ideas from wavelet constructions and yields filters that
perform significantly better than the popular 7/9 filter set from [37].

5.2 Boundaries

Careful handling of image boundaries when performing the wavelet trans-
form is essential for effective compression algorithms. Naive techniques for
artificially extending images beyond given boundaries such as periodization
or zero-padding lead to significant coding inefficiencies. For symmetrical
wavelets an effective strategy for handling boundaries is to extend the im-
age via reflection. Such an extension preserves continuity at the boundaries
and usually leads to much smaller wavelet coefficients than if discontinuities
were present at the boundaries. Brislawn [43] describes in detail procedures
for non-expansive symmetric extensions of boundaries. An alternative ap-
proach is to modify the filter near the boundary. Boundary filters [44, 45]
can be constructed that preserve filter orthogonality at boundaries. The
lifting scheme [46] provides a related method for handling filtering near the
boundaries.

5.3 Quantization

Most current wavelet coders employ scalar quantization for coding. There
are two basic strategies for performing the scalar quantization stage. If
we knew the distribution of coefficients for each subband in advance, the
optimal strategy would be to use entropy-constrained Lloyd-Max quantizers
for each subband. In general we do not have such knowledge, but we can
provide a parametric description of coefficient distributions by sending side
information. Coefficients in the high pass subbands of a wavelet transform
are known a priori to be distributed as generalized Gaussians [27] centered
around zero.
A much simpler quantizer that is commonly employed in practice is a

uniform quantizer with a dead zone. The quantization bins, as shown in
Figure 15, are of the form [n∆, (n+ 1)∆) for n ∈ Z except for the central
bin [−∆,∆). Each bin is decoded to the value at its center in the simplest
case, or to the centroid of the bin. In the case of asymptotically high rates,
uniform quantization is optimal [47]. Although in practical regimes these
dead-zone quantizers are suboptimal, they work almost as well as Lloyd-
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Max coders when we decode to the bin centroids [48]. Moreover, dead-zone
quantizers have the advantage that of being very low complexity and robust
to changes in the distribution of coefficients in source. An additional ad-
vantage of these dead-zone quantizers is that they can be nested to produce
an embedded bitstream following a procedure in [49].

5.4 Entropy Coding

Arithmetic coding provides a near-optimal entropy coding for the quan-
tized coefficient values. The coder requires an estimate of the distribution
of quantized coefficients. This estimate can be approximately specified by
providing parameters for a generalized Gaussian or a Laplacian density.
Alternatively the probabilities can be estimated online. Online adaptive
estimation has the advantage of allowing coders to exploit local changes
in image statistics. Efficient adaptive estimation procedures are discussed
in [50] and [51].
Because images are not jointly Gaussian random processes, the transform

coefficients, although decorrelated, still contain considerable structure. The
entropy coder can take advantage of some of this structure by conditioning
the encodings on previously encoded values. A coder of [49] obtains modest
performance improvements using such a technique.

5.5 Bit Allocation

The final question we need to address is that of how finely to quantize each
subband. As we discussed in Section 3.2, the general idea is to determine
the number of bits bj to devote to coding subband j so that the total dis-
tortion

∑
j Dj(bj) is minimized subject to the constraint that

∑
j bj ≤ b.

Here Dj(b) is the amount of distortion incurred in coding subband j with
b bits. When the functions Dj(b) are known in closed form we can solve
the problem using the Kuhn-Tucker conditions. One common practice is
to approximate the functions Dj(b) with the rate-distortion function for a
Gaussian random variable. However, this approximation is not very accu-
rate at low bit rates. Better results may be obtained by measuring Dj(b)
for a range of values of b and then solving the constrained minimization
problem using integer programming techniques. An algorithm of Shoham
and Gersho [52] solves precisely this problem.
For biorthogonal wavelets we have the additional problem that squared

error in the transform domain is not equal to squared error in the inverted
image. Moulin [53] has formulated a multiscale relaxation algorithm which
provides an approximate solution to the allocation problem for this case.
Moulin’s algorithm yields substantially better results than the naive ap-
proach of minimizing squared error in the transform domain.
A simpler approach is to approximate the squared error in the image by

weighting the squared errors in each subband. The weight wj for subband
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j is obtained as follows: we set a single coefficient in subband j to 1 and
set all other wavelet coefficients to zero. We then invert this transform.
The weight wj is equal to the sum of the squares of the values in the re-
sulting inverse transform. We allocate bits by minimizing the weighted sum∑

j wjDj(bj) rather than the sum
∑

j Dj(bj). Further details may be found
in Naveen and Woods [54]. This weighting procedure results in substantial
coding improvements when using wavelets that are not very close to be-
ing orthogonal, such as the Deslauriers-Dubuc wavelets popularized by the
lifting scheme [46]. The 7/9 tap filter set of [37], on the other hand, has
weights that are all nearly 1, so this weighting provides little benefit.

5.6 Perceptually Weighted Error Measures

Our goal in lossy image coding is to minimize visual discrepancies between
the original and compressed images. Measuring visual discrepancy is a dif-
ficult task. There has been a great deal of research on this problem, but
because of the great complexity of the human visual system, no simple,
accurate, and mathematically tractable measure has been found.
Our discussion up to this point has focused on minimizing squared er-

ror distortion in compressed images primarily because this error metric is
mathematically convenient. The measure suffers from a number of deficits,
however. For example, consider two images that are the same everywhere
except in a small region. Even if the difference in this small region is large
and highly visible, the mean squared error for the whole image will be small
because the discrepancy is confined to a small region. Similarly, errors that
are localized in straight lines, such as the blocking artifacts produced by
the discrete cosine transform, are much more visually objectionable than
squared error considerations alone indicate.
There is evidence that the human visual system makes use of a multireso-

lution image representation; see [55] for an overview. The eye is much more
sensitive to errors in low frequencies than in high. As a result, we can im-
prove the correspondence between our squared error metric and perceived
error by weighting the errors in different subbands according to the eye’s
contrast sensitivity in a corresponding frequency range. Weights for the
commonly used 7/9-tap filter set of [37] have been computed by Watson et
al in [56].

6 Extending the Transform Coder Paradigm

The basic wavelet coder discussed in Section 5 is based on the basic trans-
form coding paradigm, namely decorrelation and compaction of energy into
a few coefficients. The mathematical framework used in deriving the wavelet
transform motivates compression algorithms that go beyond the traditional
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mechanisms used in transform coding. These important extensions are at
the heart of modern wavelet coding algorithms of Sections 7 and 9. We take
a moment here to discuss these extensions.
Conventional transform coding relies on energy compaction in an ordered

set of transform coefficients, and quantizes those coefficients with a priority
according to their order. This paradigm, while quite powerful, is based on
several assumptions about images that are not always completely accurate.
In particular, the Gaussian assumption breaks down for the joint distribu-
tions across image discontinuities. Mallat and Falzon [57] give the following
example of how the Gaussian, high-rate analysis breaks down at low rates
for non-Gaussian processes.
Let Y [n] be a random N -vector defined by

Y [n] =



X if n = P
X if n = P + 1(modN)
0 otherwise

(1.29)

Here P is a random integer uniformly distributed between 0 and N−1 and
X is a random variable that equals 1 or -1 each with probability 1

2
. X and

P are independent. The vector Y has zero mean and a covariance matrix
with entries

E{Y [n]Y [m]} =



2
N for n = m
1
N for |n−m| ∈ {1, N − 1}
0 otherwise

(1.30)

The covariance matrix is circulant, so the KLT for this process is the simply
the Fourier transform. The Fourier transform of Y is a very inefficient repre-
sentation for coding Y . The energy at frequency k will be |1+e2πi k

N |2 which
means that the energy of Y is spread out over the entire low-frequency half
of the Fourier basis with some spill-over into the high-frequency half. The
KLT has “packed” the energy of the two non-zero coefficients of Y into
roughly N

2 coefficients. It is obvious that Y was much more compact in its
original form, and could be coded better without transformation: Only two
coefficients in Y are non-zero, and we need only specify the values of these
coefficients and their positions.
As suggested by the example above, the essence of the extensions to

traditional transform coding is the idea of selection operators. Instead of
quantizing the transform coefficients in a pre-determined order of prior-
ity, the wavelet framework lends itself to improvements, through judicious
choice of which elements to code. This is made possible primarily because
wavelet basis elements are spatially as well as spectrally compact. In parts
of the image where the energy is spatially but not spectrally compact (like
the example above) one can use selection operators to choose subsets of
the wavelet coefficients that represent that signal efficiently. A most no-
table example is the Zerotree coder and its variants (Section 7).
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More formally, the extension consists of dropping the constraint of lin-
ear image approximations, as the selection operator is nonlinear. The work
of DeVore et al. [58] and of Mallat and Falzon [57] suggests that at low
rates, the problem of image coding can be more effectively addressed as a
problem in obtaining a non-linear image approximation. This idea leads to
some important differences in coder implementation compared to the linear
framework. For linear approximations, Theorems 3.1 and 3.3 in Section 3.1
suggest that at low rates we should approximate our images using a fixed
subset of the Karhunen-Loève basis vectors. We set a fixed set of transform
coefficients to zero, namely the coefficients corresponding to the smallest
eigenvalues of the covariance matrix. The non-linear approximation idea,
on the other hand, is to approximate images using a subset of basis func-
tions that are selected adaptively based on the given image. Information
describing the particular set of basis functions used for the approximation,
called a significance map, is sent as side information. In Section 7 we de-
scribe zerotrees, a very important data structure used to efficiently encode
significance maps.
Our example suggests that a second important assumption to relax is

that our images come from a single jointly Gaussian source. We can obtain
better energy packing by optimizing our transform to the particular image
at hand rather than to the global ensemble of images. The KLT provides
efficient variance packing for vectors drawn from a single Gaussian source.
However, if we have a mixture of sources the KLT is considerably less effi-
cient. Frequency-adaptive and space/frequency-adaptive coders decompose
images over a large library of different bases and choose an energy-packing
transform that is adapted to the image itself. We describe these adaptive
coders in Section 8.
Trellis coded quantization represents a more drastic departure from the

transform coder framework. While TCQ coders operate in the transform
domain, they effectively do not use scalar quantization. Trellis coded quan-
tization captures not only correlation gain and fractional bitrates, but also
the packing gain of VQ. In both performance and complexity, TCQ is es-
sentially VQ in disguise.
The selection operator that characterizes the extension to the transform

coder paradigm generates information that needs to be conveyed to the
decoder as “side information”. This side information can be in the form
of zerotrees, or more generally energy classes. Backward mixture estima-
tion represents a different approach: it assumes that the side information
is largely redundant and can be estimated from the causal data. By cut-
ting down on the transmitted side information, these algorithms achieve a
remarkable degree of performance and efficiency.
For reference, Table 1.1 provides a comparison of the peak signal to
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TABLE 1.1. Peak signal to noise ratios in decibels for coders discussed
in the paper. Higher values indicate better performance.

Lena (bits/pixel) Barbara (bits/pixel)
Type of Coder 1.0 0.5 0.25 1.0 0.5 0.25

JPEG [59] 37.9 34.9 31.6 33.1 28.3 25.2
Optimized JPEG [60] 39.6 35.9 32.3 35.9 30.6 26.7

Baseline Wavelet [61] 39.4 36.2 33.2 34.6 29.5 26.6

Zerotree (Shapiro) [62] 39.6 36.3 33.2 35.1 30.5 26.8
Zerotree (Said & Pearlman) [63] 40.5 37.2 34.1 36.9 31.7 27.8
Zerotree (R/D optimized) [64] 40.5 37.4 34.3 37.0 31.3 27.2

Frequency-adaptive [65] 39.3 36.4 33.4 36.4 31.8 28.2
Space-frequency adaptive [66] 40.1 36.9 33.8 37.0 32.3 28.7
Frequency-adaptive + zerotrees [67] 40.6 37.4 34.4 37.7 33.1 29.3

TCQ subband [68] 41.1 37.7 34.3 – – –
Bkwd. mixture estimation (EQ) [69] 40.9 37.7 34.6 – – –

noise ratios for the coders we discuss in the paper.8 The test images are
the 512×512 Lena image and the 512×512 Barbara image. Figure 16 shows
the Barbara image as compressed by JPEG, a baseline wavelet transform
coder, and the zerotree coder of Said and Pearlman [63]. The Barbara image
is particularly difficult to code, and we have compressed the image at a low
rate to emphasize coder errors. The blocking artifacts produced by the dis-
crete cosine transform are highly visible in the image on the top right. The
difference between the two wavelet coded images is more subtle but quite
visible at close range. Because of the more efficient coefficient encoding (to
be discussed below), the zerotree-coded image has much sharper edges and
better preserves the striped texture than does the baseline transform coder.

7 Zerotree Coding

The rate-distortion analysis of the previous sections showed that optimal
bitrate allocation is achieved when the signal is divided into subbands such
that each subband contains a “white” signal. It was also shown that for
typical signals of interest, this leads to narrower bands in the low frequen-
cies and wider bands in the high frequencies. Hence, wavelet transforms
have very good energy compaction properties.
This energy compaction leads to efficient utilization of scalar quantizers.

However, a cursory examination of the transform in Figure 17 shows that
a significant amount of structure is present, particularly in the fine scale
coefficients. Wherever there is structure, there is room for compression, and

8More current numbers may be found on the web at
http://www.icsl.ucla.edu/∼ipl/psnr results.html
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FIGURE 16. Results of different compression schemes for the 512 × 512 Barbara
test image at 0.25 bits per pixel. Top left: original image. Top right: baseline
JPEG, PSNR = 24.4 dB. Bottom left: baseline wavelet transform coder [61],
PSNR = 26.6 dB. Bottom right: Said and Pearlman zerotree coder, PSNR =
27.6 dB.
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advanced wavelet compression algorithms all address this structure in the
higher frequency subbands.
One of the most prevalent approaches to this problem is based on ex-

ploiting the relationships of the wavelet coefficients across bands. A direct
visual inspection indicates that large areas in the high frequency bands have
little or no energy, and the small areas that have significant energy are sim-
ilar in shape and location, across different bands. These high-energy areas
stem from poor energy compaction close to the edges of the original image.
Flat and slowly varying regions in the original image are well-described by
the low-frequency basis elements of the wavelet transform (hence leading to
high energy compaction). At the edge locations, however, low-frequency ba-
sis elements cannot describe the signal adequately, and some of the energy
leaks into high-frequency coefficients. This happens similarly at all scales,
thus the high-energy high-frequency coefficients representing the edges in
the image have the same shape.
Our a priori knowledge that images of interest are formed mainly from

flat areas, textures, and edges, allows us to take advantage of the resulting
cross-band structure. Zerotree coders combine the idea of cross-band cor-
relation with the notion of coding zeros jointly (which we saw previously
in the case of JPEG), to generate very powerful compression algorithms.
The first instance of the implementation of zerotrees is due to Lewis

and Knowles [70]. In their algorithm the image is represented by a tree-
structured data construct (Figure 18). This data structure is implied by a
dyadic discrete wavelet transform (Figure 19) in two dimensions. The root
node of the tree represents the scaling function coefficient in the lowest
frequency band, which is the parent of three nodes. Nodes inside the tree
correspond to wavelet coefficients at a scale determined by their height
in the tree. Each of these coefficients has four children, which correspond
to the wavelets at the next finer scale having the same location in space.
These four coefficients represent the four phases of the higher resolution
basis elements at that location. At the bottom of the data structure lie the
leaf nodes, which have no children.
Note that there exist three such quadtrees for each coefficient in the low

frequency band. Each of these three trees corresponds to one of three filter-
ing orderings: there is one tree consisting entirely of coefficients arising from
horizontal high-pass, vertical low-pass operation (HL); one for horizontal
low-pass, vertical high-pass (LH), and one for high-pass in both directions
(HH).
The zerotree quantization model used by Lewis and Knowles was arrived

at by observing that often when a wavelet coefficient is small, its children
on the wavelet tree are also small. This phenomenon happens because sig-
nificant coefficients arise from edges and texture, which are local. It is not
difficult to see that this is a form of conditioning. Lewis and Knowles took
this conditioning to the limit, and assumed that insignificant parent nodes
always imply insignificant child nodes. A tree or subtree that contains (or
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FIGURE 17. Wavelet transform of the image “Lena.”
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FIGURE 19. Filter bank implementing a discrete wavelet transform

is assumed to contain) only insignificant coefficients is known as a zerotree.
Lewis and Knowles used the following algorithm for the quantization

of wavelet coefficients: Quantize each node according to an optimal scalar
quantizer for the Laplacian density. If the node value is insignificant ac-
cording to a pre-specified threshold, ignore all its children. These ignored
coefficients will be decoded as zeros at the decoder. Otherwise, go to each
of its four children and repeat the process. If the node was a leaf node and
did not have a child, go to the next root node and repeat the process.
Aside from the nice energy compaction properties of the wavelet trans-

form, the Lewis and Knowles coder achieves its compression ratios by joint
coding of zeros. For efficient run-length coding, one needs to first find a
conducive data structure, e.g. the zig-zag scan in JPEG. Perhaps the most
significant contribution of this work was to realize that wavelet domain
data provide an excellent context for run-length coding: not only are large
run lengths of zeros generated, but also there is no need to transmit the
length of zero runs, because they are assumed to automatically terminate
at the leaf nodes of the tree. Much the same as in JPEG, this is a form of
joint vector/scalar quantization. Each individual (significant) coefficient is
quantized separately, but the symbols corresponding to small coefficients
in fact are representing a vector consisting of that element and the zero
run that follows it to the bottom of the tree.
While this compression algorithm generates subjectively acceptable im-

ages, its rate-distortion performance falls short of baseline JPEG, which at
the time was often used for comparison purposes. The lack of sophistication
in the entropy coding of quantized coefficients somewhat disadvantages this
coder, but the main reason for its mediocre performance is the way it gen-
erates and recognizes zerotrees. As we have noted, whenever a coefficient
is small, it is likely that its descendents are also insignificant. However, the
Lewis and Knowles algorithm assumes that small parents always have small
descendents, and therefore suffers large distortions when this does not hold
because it zeros out large coefficients. The advantage of this method is that
the detection of zerotrees is automatic: zerotrees are determined by mea-
suring the magnitude of known coefficients. No side information is required
to specify the locations of zerotrees, but this simplicity is obtained at the
cost of reduced performance. More detailed analysis of this tradeoff gave
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rise to the next generation of zerotree coders.

7.1 The Shapiro and Said-Pearlman Coders

The Lewis and Knowles algorithm, while capturing the basic ideas inherent
in many of the later coders, was incomplete. It had all the intuition that
lies at the heart of more advanced zerotree coders, but did not efficiently
specify significance maps, which is crucial to the performance of wavelet
coders.
A significance map is a binary function whose value determines whether

each coefficient is significant or not. If not significant, a coefficient is as-
sumed to quantize to zero. Hence a decoder that knows the significance map
needs no further information about that coefficient. Otherwise, the coeffi-
cient is quantized to a non-zero value. The method of Lewis and Knowles
does not generate a significance map from the actual data, but uses one
implicitly, based on a priori assumptions on the structure of the data. On
the infrequent occasions when this assumption does not hold, a high price
is paid in terms of distortion. The methods to be discussed below make use
of the fact that, by using a small number of bits to correct mistakes in our
assumptions about the occurrences of zerotrees, we can reduce the coded
image distortion considerably.
The first algorithm of this family is due to Shapiro [71] and is known

as the embedded zerotree wavelet (EZW) algorithm. Shapiro’s coder was
based on transmitting both the non-zero data and a significance map. The
bits needed to specify a significance map can easily dominate the coder
output, especially at lower bitrates. However, there is a great deal of re-
dundancy in a general significance map for visual data, and the bitrates
for its representation can be kept in check by conditioning the map values
at each node of the tree on the corresponding value at the parent node.
Whenever an insignificant parent node is observed, it is highly likely that
the descendents are also insignificant. Therefore, most of the time, a “ze-
rotree” significance map symbol is generated. But because p, the probability
of this event, is close to 1, its information content, −p logp, is very small.
So most of the time, a very small amount of information is transmitted,
and this keeps the average bitrate needed for the significance map relatively
small.
Once in a while, one or more of the children of an insignificant node will

be significant. In that case, a symbol for “isolated zero” is transmitted.
The likelihood of this event is lower, and thus the bitrate for conveying
this information is higher. But it is essential to pay this price to avoid
losing significant information down the tree and therefore generating large
distortions.
In summary, the Shapiro algorithm uses three symbols for significance

maps: zerotree, isolated zero, or significant value. But using this structure,
and by conditionally entropy coding these symbols, the coder achieves very
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FIGURE 20. Bit plane profile for raster scan ordered wavelet coefficients.

good rate-distortion performance.
In addition, Shapiro’s coder also generates an embedded code. Coders

that generate embedded codes are said to have the progressive transmission
or successive refinement property. Successive refinement consists of first
approximating the image with a few bits of data, and then improving the
approximation as more and more information is supplied. An embedded
code has the property that for two given rates R1 > R2, the rate-R2 code
is a prefix to the rate-R1 code. Such codes are of great practical interest
for the following reasons:

• The encoder can easily achieve a precise bitrate by continuing to
output bits when it reaches the desired rate.

• The decoder can cease decoding at any given point, generating an
image that is the best representation possible with the decoded num-
ber of bits. This is of practical interest for broadcast applications
where multiple decoders with varying computational, display, and
bandwidth capabilities attempt to receive the same bitstream. With
an embedded code, each receiver can decode the passing bitstream
according to its particular needs and capabilities.

• Embedded codes are also very useful for indexing and browsing, where
only a rough approximation is sufficient for deciding whether the
image needs to be decoded or received in full. The process of screening
images can be speeded up considerably by using embedded codes:
after decoding only a small portion of the code, one knows if the
target image is present. If not, decoding is aborted and the next image
is requested, making it possible to screen a large number of images
quickly. Once the desired image is located, the complete image is
decoded.

Shapiro’s method generates an embedded code by using a bit-slice ap-
proach (see Figure 20). First, the wavelet coefficients of the image are
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indexed into a one-dimensional array, according to their order of impor-
tance. This order places lower frequency bands before higher frequency
bands since they have more energy, and coefficients within each band ap-
pear in a raster scan order. The bit-slice code is generated by scanning
this one-dimensional array, comparing each coefficient with a threshold T .
This initial scan provides the decoder with sufficient information to recover
the most significant bit slice. In the next pass, our information about each
coefficient is refined to a resolution of T/2, and the pass generates another
bit slice of information. This process is repeated until there are no more
slices to code.
Figure 20 shows that the upper bit slices contain a great many zeros

because there are many coefficients below the threshold. The role of zerotree
coding is to avoid transmitting all these zeros. Once a zerotree symbol
is transmitted, we know that all the descendent coefficients are zero, so
no information is transmitted for them. In effect, zerotrees are a clever
form of run-length coding, where the coefficients are ordered in a way to
generate longer run lengths (more efficient) as well as making the runs
self-terminating, so the length of the runs need not be transmitted.
The zerotree symbols (with high probability and small code length) can

be transmitted again and again for a given coefficient, until it rises above the
sinking threshold, at which point it will be tagged as a significant coefficient.
After this point, no more zerotree information will be transmitted for this
coefficient.
To achieve embeddedness, Shapiro uses a clever method of encoding the

sign of the wavelet coefficients with the significance information. There are
also further details of the priority of wavelet coefficients, the bit-slice cod-
ing, and adaptive arithmetic coding of quantized values (entropy coding),
which we will not pursue further in this review. The interested reader is
referred to [71] for more details.
Said and Pearlman [72] have produced an enhanced implementation of

the zerotree algorithm, known as Set Partitioning in Hierarchical Trees
(SPHIT). Their method is based on the same premises as the Shapiro algo-
rithm, but with more attention to detail. The public domain version of this
coder is very fast, and improves the performance of EZW by 0.3-0.6 dB.
This gain is mostly due to the fact that the original zerotree algorithms
allow special symbols only for single zerotrees, while in reality, there are
other sets of zeros that appear with sufficient frequency to warrant spe-
cial symbols of their own. In particular, the Said-Pearlman coder provides
symbols for combinations of parallel zerotrees.
Davis and Chawla [73] have shown that both the Shapiro and the Said

and Pearlman coders are members of a large family of tree-structured sig-
nificance mapping schemes. They provide a theoretical framework that ex-
plains in more detail the performance of these coders and describe an al-
gorithm for selecting a member of this family of significance maps that is
optimized for a given image or class of images.
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7.2 Zerotrees and Rate-Distortion Optimization

In the previous coders, zerotrees were used only when they were detected
in the actual data. But consider for the moment the following hypothetical
example: assume that in an image, there is a wide area of little activity, so
that in the corresponding location of the wavelet coefficients there exists a
large group of insignificant values. Ordinarily, this would warrant the use
of a big zerotree and a low expenditure of bitrate over that area. Suppose,
however, that there is a one-pixel discontinuity in the middle of the area,
such that at the bottom of the would-be zerotree, there is one significant
coefficient. The algorithms described so far would prohibit the use of a
zerotree for the entire area.
Inaccurate representation of a single pixel will change the average dis-

tortion in the image only by a small amount. In our example we can gain
significant coding efficiency by ignoring the single significant pixel so that
we can use a large zerotree. We need a way to determine the circumstances
under which we should ignore significant coefficients in this manner.
The specification of a zerotree for a group of wavelet coefficient is a form

of quantization. Generally, the values of the pixels we code with zerotrees
are non-zero, but in using a zerotree we specify that they be decoded as ze-
ros. Non-zerotree wavelet coefficients (significant values) are also quantized,
using scalar quantizers. If we saves bitrate by specifying larger zerotrees,
as in the hypothetical example above, the rate that was saved can be as-
signed to the scalar quantizers of the remaining coefficients, thus quantizing
them more accurately. Therefore, we have a choice in allocating the bitrate
among two types of quantization. The question is, if we are given a unit of
rate to use in coding, where should it be invested so that the corresponding
reduction in distortion is maximized?
This question, in the context of zerotree wavelet coding, was addressed

by Xiong et al. [74], using well-known bit allocation techniques [1]. The cen-
tral result for optimal bit allocation states that, in the optimal state, the
slope of the operational rate-distortion curves of all quantizers are equal.
This result is intuitive and easy to understand. The slope of the opera-
tional rate-distortion function for each quantizer tells us how many units
of distortion we add/eliminate for each unit of rate we eliminate/add. If
one of the quantizers has a smaller R-D slope, meaning that it is giving
us less distortion reduction for our bits spent, we can take bits away from
this quantizer (i.e. we can reduce its step size) and give them to the other,
more efficient quantizers. We continue to do so until all quantizers have an
equal slope.
Obviously, specification of zerotrees affects the quantization levels of non-

zero coefficients because total available rate is limited. Conversely, specify-
ing quantization levels will affect the choice of zerotrees because it affects
the incremental distortion between zerotree quantization and scalar quanti-
zation. Therefore, an iterative algorithm is needed for rate-distortion opti-
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mization. In phase one, the uniform scalar quantizers are fixed, and optimal
zerotrees are chosen. In phase two, zerotrees are fixed and the quantization
level of uniform scalar quantizers is optimized. This algorithm is guaranteed
to converge to a local optimum [74].
There are further details of this algorithm involving prediction and de-

scription of zerotrees, which we leave out of the current discussion. The
advantage of this method is mainly in performance, compared to both
EZW and SPHIT (the latter only slightly). The main disadvantages of this
method are its complexity, and perhaps more importantly, that it does not
generate an embedded bitstream.

8 Frequency, space-frequency adaptive coders

8.1 Wavelet Packets

The wavelet transform does a good job of decorrelating image pixels in prac-
tice, especially when images have power spectra that decay approximately
uniformly and exponentially. However, for images with non-exponential
rates of spectral decay and for images which have concentrated peaks in
the spectra away from DC, we can do considerably better.
Our analysis of Section 3.5 suggests that the optimal subband decompo-

sition for an image is one for which the spectrum in each subband is ap-
proximately flat. The octave-band decomposition produced by the wavelet
transform produces nearly flat spectra for exponentially decaying spectra.
The Barbara test image shown in Figure 16 contains a narrow-band com-
ponent at high frequencies that comes from the tablecloth and the striped
clothing. Fingerprint images contain similar narrow-band high frequency
components.
The best basis algorithm, developed by Coifman and Wickerhauser [75],

provides an efficient way to find a fast, wavelet-like transform that provides
a good approximation to the Karhunen-Loève transform for a given image.
As with the wavelet transform, we start by assuming that a given signal
corresponds to a sum of fine-scale scaling functions. The transform performs
a change of basis, but the new basis functions are not wavelets but rather
wavelet packets [76].
Like wavelets, wavelet packets are formed from translated and dilated

linear combinations of scaling functions. However, the recurrence relations
they satisfy are different, and the functions form an overcomplete set. Con-
sider a signal of length 2N . The wavelet basis for such a signal consists of
a scaling function and 2N − 1 translates and dilates of the wavelet ψ(x).
Wavelet packets are formed from translates and dilates of 2N different pro-
totype functions, and there are N2N different possible functions that can
be used to form a basis.
Wavelet packets are formed from recurrence relations similar to those for
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wavelets and generalize the theoretical framework of wavelets. The simplest
wavelet packet π0(x) is the scaling function φ(x). New wavelet packets πj(x)
for j > 0 are formed by the recurrence relations

π2j(x) =
∑

k

hkπj(2x− k) (1.31)

π2j+1(x) =
∑

k

gkπj(2x− k). (1.32)

where the hk and gk are the same as those in the recurrence equations
( 4.3) and ( 4.3).
The idea of wavelet packets is most easily seen in the frequency do-

main. Recall from Figure 14 that each step of the wavelet transform splits
the current low frequency subband into two subbands of equal width, one
high-pass and one low-pass. With wavelet packets there is a new degree of
freedom in the transform. Again there are N stages to the transform for a
signal of length 2N , but at each stage we have the option of splitting the
low-pass subband, the high-pass subband, both, or neither. The high and
low pass filters used in each case are the same filters used in the wavelet
transform. In fact, the wavelet transform is the special case of a wavelet
packet transform in which we always split the low-pass subband. With this
increased flexibility we can generate 2N possible different transforms in 1-
D. The possible transforms give rise to all possible dyadic partitions of the
frequency axis. The increased flexibility does not lead to a large increase
in complexity; the worst-case complexity for a wavelet packet transform is
O(N logN).

8.2 Frequency Adaptive Coders

The best basis algorithm is a fast algorithm for minimizing an additive cost
function over the set of all wavelet packet bases. Our analysis of transform
coding for Gaussian random processes suggests that we select the basis that
maximizes the transform coding gain. The approximation theoretic argu-
ments of Mallat and Falzon [57] suggest that at low bit rates the basis that
maximizes the number of coefficients below a given threshold is the best
choice. The best basis paradigm can accommodate both of these choices.
See [77] for an excellent introduction to wavelet packets and the best basis
algorithm. Ramchandran and Vetterli [65] describe an algorithm for finding
the best wavelet packet basis for coding a given image using rate-distortion
criteria.
An important application of this wavelet-packet transform optimization

is the FBI Wavelet/Scalar Quantization Standard for fingerprint compres-
sion. The standard uses a wavelet packet decomposition for the transform
stage of the encoder [78]. The transform used is fixed for all fingerprints,
however, so the FBI coder is a first-generation linear coder.
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The benefits of customizing the transform on a per-image basis depend
considerably on the image. For the Lena test image the improvement in
peak signal to noise ratio is modest, ranging from 0.1 dB at 1 bit per pixel
to 0.25 dB at 0.25 bits per pixel. This is because the octave band partitions
of the spectrum of the Lena image are nearly flat. The Barbara image (see
Figure 16), on the other hand, has a narrow-band peak in the spectrum at
high frequencies. Consequently, the PSNR increases by roughly 2 dB over
the same range of bitrates [65]. Further impressive gains are obtained by
combining the adaptive transform with a zerotree structure [67].

8.3 Space-Frequency Adaptive Coders

The best basis algorithm is not limited only to adaptive segmentation of the
frequency domain. Related algorithms permit joint time and frequency seg-
mentations. The simplest of these algorithms performs adapted frequency
segmentations over regions of the image selected through a quadtree decom-
position procedure [79, 80]. More complicated algorithms provide combina-
tions of spatially varying frequency decompositions and frequency varying
spatial decompositions [66]. These jointly adaptive algorithms work partic-
ularly well for highly nonstationary images.
The primary disadvantage of these spatially adaptive schemes are that

the pre-computation requirements are much greater than for the frequency
adaptive coders, and the search is also much larger. A second disadvan-
tage is that both spatial and frequency adaptivity are limited to dyadic
partitions. A limitation of this sort is necessary for keeping the complexity
manageable, but dyadic partitions are not in general the best ones.

9 Utilizing Intra-band Dependencies

The development of the EZW coder motivated a flurry of activity in the
area of zerotree wavelet algorithms. The inherent simplicity of the zerotree
data structure, its computational advantages, as well as the potential for
generating an embedded bitstream were all very attractive to the coding
community. Zerotree algorithms were developed for a variety of applica-
tions, and many modifications and enhancements to the algorithm were
devised, as described in Section 7.
With all the excitement incited by the discovery of EZW, it is easy

to automatically assume that zerotree structures, or more generally inter-
band dependencies, should be the focal point of efficient subband image
compression algorithms. However, some of the best performing subband
image coders known today are not based on zerotrees. In this section, we
explore two methods that utilize intra-band dependencies. One of them
uses the concept of Trellis Coded Quantization (TCQ). The other uses both
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FIGURE 21. TCQ sets and supersets

inter- and intra-band information, and is based on a recursive estimation of
the variance of the wavelet coefficients. Both of them yield excellent coding
results.

9.1 Trellis coded quantization

Trellis Coded Quantization (TCQ) [81] is a fast and effective method of
quantizing random variables. Trellis coding exploits correlations between
variables. More interestingly, it can use non-rectangular quantizer cells that
give it quantization efficiencies not attainable by scalar quantizers. The
central ideas of TCQ grew out of the ground-breaking work of Ungerboeck
[82] in trellis coded modulation. In this section we describe the operational
principles of TCQ, mostly through examples. We will briefly touch upon
variations and improvements on the original idea, especially at the low
bitrates applicable in image coding. In Section 9.2, we review the use of
TCQ in multiresolution image compression algorithms.
The basic idea behind TCQ is the following: Assume that we want to

quantize a stationary, memoryless uniform source at the rate of R bits
per sample. Performing quantization directly on this uniform source would
require an optimum scalar quantizer with 2N reproduction levels (symbols).
The idea behind TCQ is to first quantize the source more finely, with 2R+k

symbols. Of course this would exceed the allocated rate, so we cannot have
a free choice of symbols at all times.
In our example we take k = 1. The scalar codebook of 2R+1 symbols is

partitioned into subsets of 2R−1 symbols each, generating four sets. In our
example R = 2; see Figure 21. The subsets are designed such that each of
them represents reproduction points of a coarser, rate-(R − 1) quantizer.
The four subsets are designated D0, D1, D2, and D3. Also, define S0 =
D0

⋃
D2 and S1 = D1

⋃
D3, where S0 and S1 are known as supersets.

Obviously, the rate constraint prohibits the specification of an arbitrary
symbol out of 2R+1 symbols. However, it is possible to exactly specify, with
R bits, one element out of either S0 or S1. At each sample, assuming we
know which one of the supersets to use, one bit can be used to determine
the active subset, and R − 1 bits to specify a codeword from the subset.
The choice of superset is determined by the state of a finite state machine,
described by a suitable trellis. An example of such a trellis, with eight
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FIGURE 22. An 8-state TCQ trellis with subset labeling. The bits that specify the
sets within the superset also dictate the path through the trellis.

states, is given in Figure 22. The subsets {D0, D1, D2, D3} are also used to
label the branches of the trellis, so the same bit that specifies the subset
(at a given state) also determines the next state of the trellis.
Encoding is achieved by spending one bit per sample on specifying the

path through the trellis, while the remaining R−1 bits specify a codeword
out of the active subset. It may seem that we are back to a non-optimal
rate-R quantizer (either S0 or S1). So why all this effort? The answer
is that we have more codewords than a rate-R quantizer, because there
is some freedom of choosing from symbols of either S0 or S1. Of course
this choice is not completely free: the decision made at each sample is
linked to decisions made at past and future sample points, through the
permissible paths of the trellis. But it is this additional flexibility that
leads to the improved performance. Availability of both S0 and S1 means
that the reproduction levels of the quantizer are, in effect, allowed to “slide
around” and fit themselves to the data, subject to the permissible paths
on the trellis.
Before we continue with further developments of TCQ and subband cod-

ing, we should note that in terms of both efficiency and computational
requirements, TCQ is much more similar to VQ than to scalar quantiza-
tion. Since our entire discussion of transform coding has been motivated by
an attempt to avoid VQ, what is the motivation for using TCQ in subband
coding, instead of standard VQ? The answer lies in the recursive struc-
ture of trellis coding and the existence of a simple dynamic programming
method, known as the Viterbi algorithm [83], for finding the TCQ code-
words. Although it is true that block quantizers, such as VQ, are asymptot-
ically as efficient as TCQ, the process of approaching the limit is far from
trivial for VQ. For a given realization of a random process, the code vectors
generated by the VQ of size N − 1 have no clear relationship to those with
vector dimension N . In contrast, the trellis encoding algorithm increases
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the dimensionality of the problem automatically by increasing the length
of the trellis.
The standard version of TCQ is not particularly suitable for image cod-

ing, because its performance degrades quickly at low rates. This is due
partially to the fact that one bit per sample is used to encode the trellis
alone, while interesting rates for image coding are mostly below one bit per
sample. Entropy constrained TCQ (ECTCQ) improves the performance of
TCQ at low rates. In particular, a version of ECTCQ due to Marcellin [84]
addresses two key issues: reducing the rate used to represent the trellis
(the so-called “state entropy”), and ensuring that zero can be used as an
output codeword with high probability. The codebooks are designed using
the algorithm and encoding rule from [85].

9.2 TCQ subband coders

In a remarkable coincidence, at the 1994 International Conference in Image
Processing, three research groups [86, 87, 88] presented similar but inde-
pendently developed image coding algorithms. The main ingredients of the
three methods are subband decomposition, classification and optimal rate
allocation to different subsets of subband data, and entropy-constrained
TCQ. These works have been brought together in [68]. We briefly discuss
the main aspects of these algorithms.
Consider a subband decomposition of an image, and assume that the sub-

bands are well represented by a non-stationary random process X, whose
samples Xi are taken from distributions with variances σ2

i . One can com-
pute an “average variance” over the entire random process and perform
conventional optimal quantization. But better performance is possible by
sending overhead information about the variance of each sample, and quan-
tizing it optimally according to its own p.d.f.
This basic idea was first proposed by Chen and Smith [89] for adaptive

quantization of DCT coefficients. In their paper, Chen and Smith proposed
to divide all DCT coefficients into four groups according to their “activ-
ity level”, i.e. variance, and code each coefficient with an optimal quan-
tizer designed for its group. The question of how to partition coefficients
into groups was not addressed, however, and [89] arbitrarily chose to form
groups with equal population.9

However, one can show that equally populated groups are not a always

9If for a moment, we disregard the overhead information, the problem of partitioning

the coefficients bears a strong resemblance to the problem of best linear transform.
Both operations, namely the linear transform and partitioning, conserve energy. The

goal in both is to minimize overall distortion through optimal allocation of a finite rate.
Not surprisingly, the solution techniques are similar (Lagrange multipliers), and they

both generate sets with maximum separation between low and high energies (maximum
arithmetic to geometric mean ratio).
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a good choice. Suppose that we want to classify the samples into J groups,
and that all samples assigned to a given class i ∈ {1, ..., J} are grouped into
a source Xi. Let the total number of samples assigned to Xi be Ni, and the
total number of samples in all groups be N . Define pi = Ni/N to be the
probability of a sample belonging to the source Xi. Encoding the source
Xi at rate Ri results in a mean squared error distortion of the form [90]

Di(Ri) = ε2i σ2
i 2

−2Ri (1.33)

where εi is a constant depending on the shape of the pdf. The rate allocation
problem can now be solved using a Lagrange multiplier approach, much in
the same way as was shown for optimal linear transforms, resulting in the
following optimal rates:

Ri =
R

J
+
1
2
log2

ε2i σ2
i∏J

j=1(ε
2
j σ2

j )pj

(1.34)

where R is the total rate and Ri are the rates assigned to each group.
Classification gain is defined as the ratio of the quantization error of the
original signal X, divided by that of the optimally bit-allocated classified
version.

Gc =
ε2 σ2∏J

j=1(ε
2
j σ2

j )pj

(1.35)

One aims to maximize this gain over {pi}. It is not unexpected that
the optimization process can often yield non-uniform {pi}, resulting in
unequal population of the classification groups. It is noteworthy that non-
uniform populations not only have better classification gain in general, but
also lower overhead: Compared to a uniform {pi}, any other distribution
has smaller entropy, which implies smaller side information to specify the
classes.
The classification gain is defined for Xi taken from one subband. A gen-

eralization of this result in [68] combines it with the conventional coding
gain of the subbands. Another refinement takes into account the side in-
formation required for classification. The coding algorithm then optimizes
the resulting expression to determine the classifications. ECTCQ is then
used for final coding.
Practical implementation of this algorithm requires attention to a great

many details, for which the interested reader is referred to [68]. For example,
the classification maps determine energy levels of the signal, which are
related to the location of the edges in the image, and are thus related in
different subbands. A variety of methods can be used to reduce the overhead
information (in fact, the coder to be discussed in the next section makes the
management of side information the focus of its efforts) Other issues include
alternative measures for classification, and the usage of arithmetic coded
TCQ. The coding results of the ECTCQ based subband coding are some of
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the best currently available in the literature, although the computational
complexity of these algorithms is also considerably greater than the other
methods presented in this paper.

9.3 Mixture Modeling and Estimation

A common thread in successful subband and wavelet image coders is mod-
eling of image subbands as random variables drawn from a mixture of
distributions. For each sample, one needs to detect which p.d.f. of the mix-
ture it is drawn from, and then quantize it according to that pdf. Since
the decoder needs to know which element of the mixture was used for en-
coding, many algorithms send side information to the decoder. This side
information becomes significant, especially at low bitrates, so that efficient
management of it is pivotal to the success of the image coder.
All subband and wavelet coding algorithms discussed so far use this idea

in one way or another. They only differ in the constraints they put on side
information so that it can be coded efficiently. For example, zerotrees are
a clever way of indicating side information. The data is assumed from a
mixture of very low energy (zero set) and high energy random variables,
and the zero sets are assumed to have a tree structure.
The TCQ subband coders discussed in the last section also use the same

idea. Different classes represent different energies in the subbands, and are
transmitted as overhead. In [68], several methods are discussed to com-
press the side information, again based on geometrical constraints on the
constituent elements of the mixture (energy classes).
A completely different approach to the problem of handling information

overhead is explored in [69, 91]. These two works were developed simultane-
ously but independently. The version developed in [69] is named Estimation
Quantization (EQ) by the authors, and is the one that we present in the
following. The title of [91] suggests a focus on entropy coding, but in fact
the underlying ideas of the two are remarkably similar. We will refer to the
the aggregate class as backward mixture-estimation encoding (BMEE).
BMEE models the wavelet subband coefficients as non-stationary gener-

alized Gaussian, whose non-stationarity is manifested by a slowly varying
variance (energy) in each band. Because the energy varies slowly, it can be
predicted from causal neighboring coefficients. Therefore, unlike previous
methods, BMEE does not send the bulk of mixture information as over-
head, but attempts to recover it at the decoder from already transmitted
data, hence the designation “backward”. BMEE assumes that the causal
neighborhood of a subband coefficient (including parents in a subband tree)
has the same energy (variance) as the coefficient itself. The estimate of en-
ergy is found by applying a maximum likelihood method to a training set
formed by the causal neighborhood.
Similar to other recursive algorithms that involve quantization, BMEE

has to contend with the problem of stability and drift. Specifically, the
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decoder has access only to quantized coefficients, therefore the estimator of
energy at the encoder can only use quantized coefficients. Otherwise, the
estimates at the encoder and decoder will vary, resulting in drift problems.
This presents the added difficulty of estimating variances from quantized
causal coefficients. BMEE incorporates the quantization of the coefficients
into the maximum likelihood estimation of the variance.
The quantization itself is performed with a dead-zone uniform quantizer

(see Figure 15). This quantizer offers a good approximation to entropy con-
strained quantization of generalized Gaussian signals. The dead-zone and
step sizes of the quantizers are determined through a Lagrange multiplier
optimization technique, which was introduced in the section on optimal
rate allocation. This optimization is performed offline, once each for a va-
riety of encoding rates and shape parameters, and the results are stored in
a look-up table. This approach is to be credited for the speed of the algo-
rithm, because no optimization need take place at the time of encoding the
image.
Finally, the backward nature of the algorithm, combined with quantiza-

tion, presents another challenge. All the elements in the causal neighbor-
hood may sometimes quantize to zero. In that case, the current coefficient
will also quantize to zero. This degenerate condition will propagate through
the subband, making all coefficients on the causal side of this degeneracy
equal to zero. To avoid this condition, BMEE provides for a mechanism to
send side information to the receiver, whenever all neighboring elements
are zero. This is accomplished by a preliminary pass through the coeffi-
cients, where the algorithm tries to “guess” which one of the coefficients
will have degenerate neighborhoods, and assembles them to a set. From
this set, a generalized Gaussian variance and shape parameter is computed
and transmitted to the decoder. Every time a degenerate case happens, the
encoder and decoder act based on this extra set of parameters, instead of
using the backward estimation mode.
The BMEE coder is very fast, and especially in the low bitrate mode

(less than 0.25 bits per pixel) is extremely competitive. This is likely to
motivate a re-visitation of the role of side information and the mechanism
of its transmission in wavelet coders.

10 Future Trends

Current research in image coding is progressing along a number of fronts.
At the most basic level, a new interpretation of the wavelet transform
has appeared in the literature. This new theoretical framework, called the
lifting scheme [41], provides a simpler and more flexible method for design-
ing wavelets than standard Fourier-based methods. New families of non-
separable wavelets constructed using lifting have the potential to improve



56 Geoffrey M. Davis, Aria Nosratinia

coders. One very intriguing avenue for future research is the exploration of
the nonlinear analogs of the wavelet transform that lifting makes possible.
The area of classification and backward estimation based coders is an

active one. Several research groups are reporting promising results [92, 93].
One very promising research direction is the development of coded images

that are robust to channel noise via joint source and channel coding. See
for example [94], [95] and [96].
The adoption of wavelet based coding to video signals presents special

challenges. One can apply 2-D wavelet coding in combination to temporal
prediction (motion estimated prediction), which will be a direct counterpart
of current DCT-based video coding methods. It is also possible to consider
the video signal as a three-dimensional array of data and attempt to com-
press it with 3-D wavelet analysis. This approach presents difficulties that
arise from the fundamental properties of the discrete wavelet transform.
The discrete wavelet transform (as well as any subband decomposition) is
a space-varying operator, due to the presence of decimation and interpo-
lation. This space variance is not conducive to compact representation of
video signals, as described below.
Video signals are best modeled by 2-D projections whose position in

consecutive frames of the video signal varies by unknown amounts. Because
vast amounts of information are repeated in this way, one can achieve
considerable gain by representing the repeated information only once. This
is the basis of motion compensated coding. However, since the wavelet
representation of the same 2-D signal will vary once it is shifted10, this
redundancy is difficult to reproduce in the wavelet domain. A frequency
domain study of the difficulties of 3-D wavelet coding of video is presented
in [97], and leads to the same insights. Some attempts have also been made
on applying 3-D wavelet coding on the residual 3-D data after motion
compensation, but have met with indifferent success.

11 Summary and Conclusion

Image compression is governed by the general laws of information theory
and specifically rate-distortion theory. However, these general laws are non-
constructive and the more specific techniques of quantization theory are
needed for the actual development of compression algorithms.
Vector quantization can theoretically attain the maximum achievable

coding efficiency. However, VQ has three main impediments: computational
complexity, delay, and the curse of dimensionality. Transform coding tech-
niques, in conjunction with entropy coding, capture important gains of VQ,

10Unless the shift is exactly by a correct multiple of M samples, where M is the
downsampling rate
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while avoiding most of its difficulties.
Theoretically, the Karhunen-Loéve transform is optimal for Gaussian

processes. Approximations to the K-L transform, such as the DCT, have
led to very successful image coding algorithms such as JPEG. However,
even if one argues that image pixels can be individually Gaussian, they
cannot be assumed to be jointly Gaussian, at least not across the image
discontinuities. Image discontinuities are the place where traditional coders
spend the most rate, and suffer the most distortion. This happens because
traditional Fourier-type transforms (e.g., DCT) disperse the energy of dis-
continuous signals across many coefficients, while the compaction of energy
in the transform domain is essential for good coding performance.
The discrete wavelet transform provides an elegant framework for signal

representation in which both smooth areas and discontinuities can be rep-
resented compactly in the transform domain. This ability comes from the
multi-resolution properties of wavelets. One can motivate wavelets through
spectral partitioning arguments used in deriving optimal quantizers for
Gaussian processes. However, the usefulness of wavelets in compression
goes beyond the Gaussian case.
State of the art wavelet coders assume that image data comes from a

source with fluctuating variance. Each of these coders provides a mechanism
to express the local variance of the wavelet coefficients, and quantizes the
coefficients optimally or near-optimally according to that variance. The
individual wavelet coders vary in the way they estimate and transmit this
variances to the decoder, as well as the strategies for quantizing according
to that variance.
Zerotree coders assume a two-state structure for the variances: either

negligible (zero) or otherwise. They send side information to the decoder
to indicate the positions of the non-zero coefficients. This process yields
a non-linear image approximation rather than the linear truncated KLT-
based approximation motivated by our Gaussian model. The set of zero co-
efficients are expressed in terms of wavelet trees (Lewis & Knowles, Shapiro,
others) or combinations thereof (Said & Pearlman). The zero sets are trans-
mitted to the receiver as overhead, as well as the rest of the quantized data.
Zerotree coders rely strongly on the dependency of data across scales of the
wavelet transform.
Frequency-adaptive coders improve upon basic wavelet coders by adapt-

ing transforms according to the local inter-pixel correlation structure within
an image. Local fluctuations in the correlation structure and in the variance
can be addressed by spatially adapting the transform and by augmenting
the optimized transforms with a zerotree structure.
Other wavelet coders use dependency of data within the bands (and

sometimes across the bands as well). Coders based on Trellis Coded Quan-
tization (TCQ) partition coefficients into a number of groups, according to
their energy. For each coefficient, they estimate and/or transmit the group
information as well as coding the value of the coefficient with TCQ, ac-
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cording to the nominal variance of the group. Another newly developed
class of coders transmit only minimal variance information while achieving
impressive coding results, indicating that perhaps the variance information
is more redundant than previously thought.
While some of these coders may not employ what might strictly be called

a wavelet transform, they all utilize a multi-resolution decomposition, and
use concepts that were motivated by wavelet theory. Wavelets and the ideas
arising from wavelet analysis have had an indelible effect on the theory and
practice of image compression, and are likely to continue their dominant
presence in image coding research in the near future.
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