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ABSTRACT

Fractal image compression was one of the earliest compression schemes to take advantage of image redundancy

in scale. The theory of iterated function systems motivates a broad class of fractal schemes but does not give

much guidance for implementation. Fractal compression schemes do not �t into the standard transform coder

paradigm and have proven di�cult to analyze. We introduce a wavelet-based framework for analyzing fractal

block coders which simpli�es these schemes considerably. Using this framework we �nd that fractal block coders

are Haar wavelet subtree quantization schemes, and we thereby place fractal schemes in the context of conven-

tional transform coders. We show that the central mechanism of fractal schemes is an extrapolation of �ne-scale

Haar wavelet coe�cients from coarse-scale coe�cients. We use this insight to derive a wavelet-based analog of

fractal compression, the self-quantization of subtrees (SQS) scheme. We obtain a simple SQS decoder convergence

proof and a fast SQS decoding algorithm which simplify and generalize existing fractal compression results. We

describe an adaptive SQS compression scheme which outperforms the best fractal schemes in the literature by

roughly 1 dB in PSNR across a broad range of compression ratios and which has performance comparable to

some of the best conventional wavelet subtree quantization schemes.
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1 INTRODUCTION

Lossy image compression schemes such as JPEG achieve most of their data reduction by eliminating spatial

redundancy within images. Recent wavelet-based techniques which have achieved particularly high quality rate-

distortion results have done so by taking advantage of additional redundancy in scale [15, 17]. Encoding in these

wavelet schemes, as well as in JPEG, follows a standard, well-understood paradigm. First an invertible transform

is performed on an image; then the transform coe�cients are quantized, entropy-coded, and stored.

Fractal image compression [9, 6] also takes advantage of redundancy in scale, but its operating principles are

very di�erent from those of transform coders. Fractal compression is related to vector quantization, but it uses

a self-referential vector codebook, drawn from the image itself, rather than a �xed codebook. Images are not

stored as a set of quantized transform coe�cients, but instead as �xed points of maps on the plane. The theory
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of iterated function systems (IFS) motivates a broad class fractal compression schemes but does not give much

insight as to why fractal schemes work well. IFS theory also gives little guidance as to how e�cient schemes

should be implemented. Basic components of fractal schemes, such as decoder convergence properties, methods

of estimating quantization error, and bit allocation methods are poorly understood.

In this paper we introduce a wavelet-based framework for analyzing fractal block coders. The wavelet frame-

work simpli�es the analysis of fractal compression considerably and, more importantly, gives a clear picture of

why such schemes work. We show that existing fractal block coding schemes function essentially by extrapolating

Haar wavelet coe�cients across scales. Our analysis gives insight into a number of important implementation is-

sues which are not well-understood, including bit allocation methods, error estimation, quantization vector search

strategies, and super-resolution of images. Using the insights from our analysis we derive a wavelet-based analog

of fractal compression, the self-quantization of subtrees (SQS) scheme. In our experiments SQS-compressed im-

ages have PSNR's of roughly 1 dB higher than the best existing fractal compression schemes over a broad range

of compression ratios. The overall performance of our SQS coder is comparable to that of Shapiro's embedded

zerotree wavelet coder [15]. SQS decoding is fast, requiring O(N ) operations for an N -pixel images, unlike the

asymptotically converging standard fractal decoders.

The balance of the paper is organized as follows. In the next section we give an overview of fractal block

coding schemes. In section 3 we show that fractal block coders are Haar wavelet subtree quantization schemes.

We discuss the convergence properties of fractal decoders and show that these properties are closely related to

wavelet reproducing kernels. In section 4 we introduce a modi�cation of fractal coding which enables us to obtain

a simple decoder convergence proof and a fast decoding algorithm. We generalize this modi�ed coder to the self-

quantization of subtrees scheme. Our analysis of the decoder shows that the central component of fractal coding

schemes is an extrapolation of �ne-scale information from coarse-scale. Here scale is in the sense of the detail

spaces of a multiresolution analyses [14]. Fractal decoding is thus a cascading of information from coarse scales

to �ne. We see that the convergence problems which a�ect conventional fractal compression schemes are due

to dependencies of �ne-scale coe�cients on �ner-scale ones. In section 5 we describe an adaptive self-quantized

subtree compression scheme which is a generalization of a wavelet compression scheme of [17], and in section 6

we present the results of this compression scheme.

2 FRACTAL IMAGE COMPRESSION

Fractal image compression techniques, introduced by Barnsley and Jacquin [2], have proved very successful

for compressing images at low bitrates. An overview of these techniques can be found in [8]. The motivation for

fractal image compression is that many basic features in images are invariant under rescaling. Constant regions

in images are invariant under local averaging and subsampling, as are straight edges. Fractal compression takes

advantage of this redundancy by using coarse-scale image features to quantize �ne-scale features. In this work

we will focus on fractal block coders.

Fractal block coders perform a vector quantization of image blocks. The codebook consists of larger blocks

from the image which are locally averaged and subsampled. This codebook is very e�ective for coding constant

regions and straight edges due to the scale invariance of these features. An important advantage over standard

vector quantization coders is that fractal coders do not require separate storage of a �xed vector codebook. Fractal

encoding algorithms entail the construction of a map from the plane to itself of which the unique �xed point is

an approximation to the image to be coded. Compressed images are stored by storing this map and recovered by

iteratively applying the map to �nd its �xed point. We now describe a simple fractal image compression scheme

based on those in [9] and [6].

Let I be a 2N � 2N pixel image, and let BJ
K;LI be the 2J � 2J subblock of I with lower left hand corner at

(2JK; 2JL). BJ
K;LI is the result of applying the linear \get-block" operator BJ

K;L : R2
2N

! R
22J to the image I.



The adjoint of the get-block operator, (BJ
K;L)

�, is a \put-block" operator which maps a 2J � 2J subblock to a

2N �2N image containing the block with its lower left hand corner at the point (K;L). We will use capital letters

to denote block coordinates and lower case to denote individual pixel coordinates. To simplify our notation we

will use a capital Greek multi-index, usually �, to abbreviate the block coordinates K;L and a lower-case Greek

multi-index to abbreviate pixel coordinates.

We �rst partition I into a set of non-overlapping 2R�2R range blocks, the blocks BR
2RK;2RL

I; with (K;L) 2 R

where R = f(K;L) : K;L 2 Z and 0 � K;L < 2N�Rg (by construction, integer-valued subscripts correspond to

a disjoint partition of the image). The goal of the compression scheme is to approximate each range block with

a block from a codebook constructed from domain blocks BD
2DK;2DL

I; with (K;L) 2 D where D > R and D is a

set called the domain pool. In [9] the codebook is constructed from all unit translates of the domain blocks, so

the domain pool D = f(K;L) : 2DK; 2DL 2 Z and 0 � K;L < 2N�Dg is an collection of overlapping subblocks.

We discuss other possible domain pools below. In our implementation we will usually take D = R + 1, i.e. the

domain blocks are blocks with twice the width and height of the range blocks.

We now de�ne several operators which will be used to construct the codebook from the domain blocks. Let A

be the \average-and-subsample" operator which maps 2J � 2J image blocks to 2J�1 � 2J�1 blocks by averaging

each pixel inBJ
� with its neighbors and then subsampling. We have (ABJ

�I)(k; l) =
1
4
[(BJ

�I)(2k; 2l)+(B
J
�I)(2k+

1; 2l) + (BJ
�I)(2k; 2l + 1) + (BJ

�I)(2k + 1; 2l + 1)] where BJ
�I(k; l) is the pixel at coordinates (k; l) within the

subblock BJ
�I. Let fLig1�i�8 be the 8 isometries of the square obtained from compositions of re
ections and 90

degree rotations.

We approximate each range block in the image with a linear combination of a codebook element and a subblock

of the matrix 1, the 2N�2N matrix of 1's. This subblock of the matrix of 1's allows us to adjust the DC component

of our approximation. We have

BR
� I � g�LP (�)A

D�RBD
�(�)I + h�B

R
�1; (1)

where �(�) assigns an element from the domain pool to each range element, P (�) assigns each range element a

symmetry operator index, and AD�R denotes the operator A applied D � R times. The scalars g� and h�, the

domain block �(�), and the symmetry operator index P (�) are chosen to minimize the l2 approximation error

kBR
�I � (g�LP (�)A

D�RBD
�(�)

I + h�B
R
�1)k. We note that while it is possible to bound the l2 quantization error

in the decoded image in terms of this l2 error, minimizing this l2 error is not an optimal selection criterion. An

improved criterion is described in an earlier work [5].

The image I can be written as a sum of its range blocks, I =
P

�2R(B
R
� )
�BR

�I; so we have

I �
X

�2R

g�(B
R
� )
�LP (�)A

D�RBD
�(�)I +

X

�2R

h�(B
R
� )
�BR

�1 =GI +H: (2)

To store the image we store for each � 2 R the scalars g� and h�, the symmetry operator index P (�), and the

domain block �(�) used for quantization.

We recover the image iteratively from this stored information. We start with an arbitrary image I0, and we

compute In = GIn�1+H. It can be shown that this process converges pointwise when the scaling factors jg�j < 1

[8]. Numerical experiments show that this upper bound is not a necessary condition for convergence, and that

the use of larger bounds on the scaling factors can yield improved compression results [6].



3 FRACTAL COMPRESSION IN THE WAVELET DOMAIN

3.1 The Discrete Wavelet Transform

Wavelets are a natural tool for analyzing fractal compression since wavelet bases possess the same type of

dyadic similarity which fractal compression exploits. The Haar wavelet basis, in particular, possesses the same

regular block structure that the partition into range blocks imposes on the image to be compressed. We �rst

establish some notation. For simplicitywe will consider orthogonal wavelets only; it is straightforward to generalize

the results to the biorthogonal case.

Let  (x) and �(x) be an orthogonal wavelet and its associated scaling function (see [10] and [14] for an

overview of wavelets). The scaling function together with a set of dyadic rescalings and integral translations

of  (x) form a basis of L2(R). We can form a similar basis of L2(R2) using the function �(x; y) = �(x)�(y),

a separable 2-D scaling function, together with dyadic rescalings and integer translations of the separable 2-D

wavelets  H(x; y) = �(x) (y),  V (x; y) =  (x)�(y), and  D(x; y) =  (x) (y). The wavelets  H ,  V , and  D
act as horizontal, vertical, and diagonal edge detectors, respectively. We use the subscript ! to represent one of

the three orientations in 
 = fH;V;Dg.

The discrete wavelet transform of a 2N � 2N image I expands the image into a linear combination of the

basis functions in the set WJ0 , the functions �
J0
k;l = 2J0�(2J0x� k; 2J0y � l) and  

j

!;k;l = 2j !(2
jx� k; 2jy � l);

for J0 � j < N (the scale J0 of the scaling functions is taken to be 0 in the standard version of the discrete

wavelet transform). We will use a single lower-case Greek multi-index, usually 
, to abbreviate the orientation

and translation subscripts of � and  .

Each wavelet  
j

!;k;l
has four children, the wavelets of the next �ner scale,  

j+1
!;2k;2l,  

j+1
!;2k+1;2l,  

j+1
!;2k;2l+1, and

 
j+1
!;2k+1;2l+1, that correspond to the same spatial location and the same orientation as  

j
!;k;l. A wavelet subtree

is a set of wavelet coe�cients that correspond to the same spatial location but di�erent scales and orientations.

The subtree SJK;LI consists of the coe�cients of the three oriented wavelets  J!;K;L, for ! 2 fH;V;Dg, together

with the coe�cients of their children, their children's children, and so on. SJK;L : R22N ! R
22(N�J)�1 is a linear

\get-subtree" operator analogous to our get-block operator which extracts a subtree with root wavelets  J!;K;L
from the wavelet transform of an image. The adjoint of SJK;L is a \put-subtree" operator which inserts a subtree

into an all-zero wavelet transform at scale J , o�set (K;L). The subtree SJK;LI essentially provides local high-pass

information about the image; the associated scaling function �JK;L provides the local low-pass information. Two

wavelet subtrees are shown as shaded regions in Figure 3.2.

3.2 A Wavelet Analog of Fractal Compression

We now obtain a wavelet-based analog of fractal compression. In fractal compression we approximate a set of

2R� 2R range blocks using a set of 2D � 2D domain blocks. The wavelet analog of an image block, a set of pixels

associated with a small region in space, is a wavelet subtree together with its associated scaling function coe�cient.

For the Haar basis, subblocks and their corresponding subtrees and associated scaling function coe�cients contain

identical information, i.e. the transform of a range block BR
�I yields the coe�cients of subtree SN�R� I and the

scaling function coe�cient < I; �N�R� >. For the remainder of this section we will take our wavelet basis to be

the Haar basis. The actions of the get-subtree and put-subtree operators are illustrated in Figure 3.2.

We now examine the wavelet-domain behavior of the linear operators used in fractal compression. We �rst

consider the wavelet analog Â of the average-and-subsample operator A. Averaging and subsampling of the

�nest-scale Haar wavelets sets them to 0. For scales other than the �nest, the local averaging has no e�ect, and
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Figure 1: We approximate the darkly shaded range subtree SR�I using the codebook element g�L̂ÂS
D
�0I which

is derived from the lightly shaded domain subtree SD�0I. Â truncates the �nest scale coe�cients of the domain

subtree and multiplies the coe�cients by 1
2
, and L̂ rotates it. When storing this image we save the coarse-scale

wavelet coe�cients in bands 2 and below, and we save the encodings of all subtrees with roots in band 3.

subsampling  j
 yields the Haar wavelet at the next �ner scale,  j+1
 , multiplied by 1
2
. Similarly, averaging and

subsampling the scaling function �j
 yields the scaling function at the next �ner resolution, �j+1
 except for the

�nest-scale scaling functions, which are set to 0. The action of the averaging and subsampling operator is thus

seen to be a shift of coe�cients from coarse-scale to �ne, a multiplication by 1
2
, and a truncation of the �nest-scale

coe�cients. We see, then, that the e�ect of Â is to prune the leaves of a subtree and shift all coe�cients to the

next �ner scale. The action of Â is illustrated in Figure 3.2.

For symmetrical wavelets, the only wavelets we will consider here, the horizontal re
ection of a block cor-

responds to a horizontal re
ection of wavelet coe�cients within each scale of a subtree, and 90 degree block

rotations correspond to 90 degree rotations of wavelet coe�cients within each scale and a switching of the  H
coe�cients with  V coe�cients. Hence the wavelet analogs L̂i of the block symmetry operators Li permute

wavelet coe�cients within each scale. Figure 3.2 illustrates the action of a symmetry operator on a subtree.

The important thing to note is that the operators we use preserve subtrees, and the basic steps in fractal coding

have simple wavelet analogs. The extraction of a domain block by the operator BD
�(�)

corresponds to the extraction

of the subtree by the operator SN�D
�(�)

plus the extraction of the scaling function coe�cient < I; �N�D
�(�)

>. The

averaging and subsampling performed by A followed by the rotation and re
ection performed by L corresponds

to a shifting of the wavelet coe�cients from coarse scales to �ne and a permutation of the subtree coe�cients

within each scale. The result is that we obtain a relation similar to (1) for the Haar wavelet subtrees,

SN�R� I � g�L̂P (�)Â
D�RSN�D

�(�)
I: (3)

The o�set terms h� from (1) a�ect only the scaling function coe�cients because all translates of Haar wavelets

are orthogonal to the subblocks of 1. Breaking up the subtrees into their constituent wavelet coe�cients, we



obtain a system of equations for the coe�cients of the  j
 in SN�R� I,

< I;  j
 >�
g�

2D�R
< I;  

j�(D�R)


0 >=
g�

2D�R
< I;T( j
) > : (4)

Here T is the linear map induced by the domain block selection followed by averaging, subsampling, and rotating

which, as we noted above, maps wavelet coe�cents to wavelet coe�cients. We obtain a similar relation for the

�'s,

< I; �N�R� >�
g�

2D�R
< I; �N�D

�(�)
> +h� =

g�

2D�R
< I;T(�N�R� ) > +h� (5)

The system of equations (4) and (5) reveal that fractal image compression is essentially a map from coarse-scales

to �ne. The relationships are complicated by the fact that the wavelets and scaling functions on the right hand

sides of (4) and (5) are not always members of our basisW since general domain pools may contain domain blocks

which require non-integral translates of wavelets in the subtrees. We discuss this idea of a mapping from coarse

to �ne scales in greater detail in the next section.

We obtain a wavelet-based analog of fractal compression by replacing the Haar basis used in (4) and (5) with

a symmetric orthogonal or biorthogonal wavelet basis (when using a biorthogonal basis the above relations have

 and � replaced by their dual functions ~ and ~�). There are two e�ects of this change of basis. First, when the

new wavelets are smooth, we switch from quantizing image subblocks, which possess sharp, discontinuous edges,

to quantizing subtrees, which correspond to a partition with smooth boundaries. Second, we replace the local

averaging and subsampling procedure with more general �ltering. Our numerical experiments below show that

changing from the Haar basis to a smooth basis results in considerable improvement in compressed image quality

due in part to the elimination of the block boundary artifacts.

3.3 Conditions for Convergence

Our generalized quantization scheme yields a relation for an image I of the form

(WI) = G(WI) +H (6)

where WI is the discrete wavelet transform of I. Given G and H we decode I by the same iterative process

used in fractal schemes. Our �rst goal is to show that the above encoding and iterative decoding process yields

a well-de�ned image for non-Haar wavelets. While showing that (I �G) is non-singular is su�cient to ensure

decodability, inverting (I �G) is prohibitively computationally expensive, requiring O(26N ) work for a 2N � 2N

pixel image. The iterative decoding scheme converges if Gn ! 0 as n!1, which will happen if and only if all

eigenvalues of G are strictly less than 1 in magnitude. We note that G is not in general diagonalizable, so we are

interested in its Jordan blocks.

By expanding the image I into a linear combination of basis functions in (4) and (5) we �nd that the entries

of the matrixG in the row corresponding to the basis function w 2 W are the projections of T(w) onto the basis

multiplied by 2R�Dg�, i.e. Gk;l = 2R�Dg�k < wl;T(wk) > for wk; wl 2 W. When T(wk) 2 W, the matrix G

has only one nonzero entry per row, but for the general case we are currently considering, the o�sets of T (wk)

in general correspond to non-integral translates. By the Ger�sgorin circle limit theorem, all eigenvalues will have

magnitudes strictly less than 1 if for all g� we have

g� < 2D�Rmin
w0

1P
w2WN�R

j < w;w0 > j
: (7)

where the where the minimum is taken over all wavelets contained in the subtrees in the domain pool and all their

associated scaling functions. We thus obtain su�cient conditions for convergence based on the l1 norm of sampled

reproducing kernels for � and  . This bound on the g�'s is not a necessary condition for convergence. Indeed,

the sum in the denominator in general considerably larger than 2D�R, so for the Haar basis this is a weaker



result than can be obtained for subblock methods via pointwise methods [8]. The bound does show that we can

decode our wavelet encoding via an iterative algorithm for some range of scale factors. In the next section we see

that the contractivity of the map we obtain by restricting the constants g� is not as important as showing that

information is transferred from coarse scales to �ne. We introduce a re�nement of our wavelet analog to fractal

compression for which the decoding process converges unconditionally and which has a fast decoding algorithm.

4 SELF-QUANTIZATION OF SUBTREES

4.1 Extrapolation in Scale

The approximation in (5) gives an implicit scheme for obtaining scaling function coe�cients, and it requires

that we store a constant h� for each scaling function coe�cient. We can greatly simplify our scheme by storing

the coe�cients < I; �N�R� > directly. The scaling function coe�cients contain removable spatial redundancy, so

as we discuss in section 5, we can store them very e�ciently.

We can further simplify our scheme by restricting the domain pool to the disjoint partition D = f(K;L) :

K;L 2 Z and 0 � K;L < 2N�Dg. With this restriction, all wavelets corresponding to coe�cients in the domain

pool subtrees are members of the basis WN�D. Hence in the system (4) each wavelet coe�cient of scale � R

depends only on a coe�cient of a coarser-scale wavelet.

We say that a map from one set of wavelet coe�cients to another is R-scale-extending if each wavelet coe�cient

of scale j � R in the range is dependent only on wavelet coe�cients of scale < j. The system given in (4) is a

particularly simple form of scale-extending map. One can show that (4) also yields an R-scale-extending map for

the larger domain pool D = f(K;L) : 2D�RK; 2D�RL 2 Z and 0 � K;L < 2N�Dg. In the case of the the Haar

basis this set corresponds to the set of domain blocks which share boundaries with range blocks. This particular

restricted domain pool has been studied for fractal block coders in [13] and [3]. The theorem below generalizes

their results, extends them into the general wavelet framework, and gives new insight into why their results hold.

Theorem 4.1 (Reconstruction Theorem). Let I be a 2N � 2N image for which the scaling function

coe�cients < I; �N�R
 > are known, and suppose that we know that I is the �xed point of a linear R-scale-

extending map M. Then we can �nd I using R applications of the map M.

Proof: By applying the wavelet transform to the image IR =
P


 < I; �N�R
 > �N�R
 , we obtain all the

coarse-scale wavelet coe�cients < I;  j
 > for j < N � R for I. We can now obtain the wavelet coe�cients

< I;  N�R
 > by applying the mapM since these coe�cients depend only on the coe�cients we already know.

Each time we apply the map M we obtain the wavelet coe�cients at the next �ner scale, so by induction the

result is proved. A more detailed version of this proof may be found in [5].

2

When we use the disjoint domain pool described above, the matrix G from (6) has a very simple form. The

rows of G corresponding to the scaling functions are all zero since we have transferred all the scaling function

information to the coe�cients in H. Because the wavelet permutation map T maps each basis element to a

multiple of a basis element, the rows corresponding to wavelets in subtree SN�R� I contain a single nonzero entry

with value
g


2D�R
. We order the vector of coe�cients from coarse to �ne, so G will be a strictly lower triangular

matrix with all zeros on the diagonal. Thus, all eigenvalues of G are zero.

Because each �ne-scale wavelet coe�cient depends on only one other coe�cient when we use our restricted



disjoint domain pool, the iterative technique of our proof yields a fast decoding algorithm which requires O(1)

operations per pixel. This iterative decoding algorithm also yields a fast decoding algorithm for the larger domain

pool D = f(K;L) : 2D�RK; 2D�RL 2 Z and 0 � K;L < 2N�Dg for Haar wavelets since the matrixG has a band

structure.

The above reconstruction theorem generalizes to allow adaptive image encoding. Using the disjoint domain

pool, we can recover an image using a fast algorithm provided that for each self-quantized subtree we store its

associated scaling function coe�cient. Equivalently, we can recover the image provided we know all coarse-scale

wavelet coe�cients not contained in the range subtrees.

4.2 Implications

Loosely speaking, standard fractal compression schemes entail the quantization of \�ne-scale" features using

\coarse-scale" features. The above theorem shows we can make this notion of scale rigorous with a particular class

of domain pools. Features of a particular scale constitute a detail space of a multiresolution analysis [14]. Fractal

decoding can be seen as a cascading of information from coarse wavelet coe�cients to �ne. Fractal compression

has been motivated by the theory of iterated function systems [2], which involves the construction of a strictly

contractive map from the image to itself. However, the scale-extending maps described above are not in general

contractive in any of the lp norms. It is the 
ow from coarse to �ne and not the contractivity of the map which

matters.

The detail space of resolution 2j of a multiresolution approximations is invariant under translations of 2N�j

pixels, but not under unit pixel translations. It is precisely this lack of translation invariance which causes

convergence problems when we expand the disjoint domain pools studied above to include �ner translates of

domain subtrees. When we approximate range subtrees using �ne translates of domain subtrees, we introduce

dependencies of �ne-scale wavelet coe�cients on coe�cients from the same or �ner scales. Information no longer


ows strictly from coarse to �ne under the map. Dependency loops from �ne-scales to �ne-scales permit the

growth of unstable eigenvectors unless these loops are damped by restricting the scaling coe�cients g�. These

dependency loops are the reason scaling factors are limited to be less than 1 in magnitude in conventional fractal

coders.

The reproducing kernel for the wavelet basis characterizes the overlap of arbitrary translates of the detail

spaces. The restriction on the scaling factors (7) embodies this measure of overlap. We can obtain a translation

invariant domain pool with unconditional convergence by switching to a basis of sinc wavelets, since the detail

spaces for this basis correspond to translation invariant frequency bands. The sinc wavelet basis possesses a

number of disadvantages, however. The basis elements do not have compact support, so locally self-similar

features can only be approximately isolated by the subtrees. In addition, computations are very slow.

Our analysis sheds light on several other aspects of fractal coding. Our convergence proof shows that images

are reconstructed from the stored self-similarity relation by cascading information from coarse to �ne scales. This

suggests that the decoding process will be more sensitive to errors in coarser scales than �ne. In [5] we examine

a weighted l2 error metric which we use to select which domain subtree to use for quantization.

Our convergence proof also gives insight into the mechanismunderlying fractal interpolation or super-resolution

of images. Each iteration of our decoding process generates a new level of wavelet coe�cients. By continuing

to decode after convergence, we can generate additional �ne-scale coe�cients. When we invert the resulting

transform, we obtain a larger image than we originally encoded with detail that has been interpolated using our

self-similarity map.



5 IMPLEMENTATION

Traditional fractal coders have typically been implemented using top-down re�nement schemes. An initial set

of large subblocks are self-quantized using a domain pool drawn from larger subblocks. Subblocks for which the

quantization error exceeds a predetermined threshold are subdivided into smaller subblocks. The smaller blocks

are then quantized and the quantization error is again tested against the threshold. Re�nement proceeds until

either the error is less than the threshold or the size of the subblocks is smaller than some minimum value. Bit

allocation is determined experimentally. Although these schemes have proven e�ective in practice, they are not

optimal in a rate-distortion sense.

Our wavelet analog of fractal compression possesses a structure very similar to a number of recently introduced

hierarchical wavelet coders [15][17][11]. The basic problem is to quantize a tree of wavelet coe�cients using some

combination of subtree quantization and scalar quantization. In addition the resolution of the scalar quantizers

must be adaptively allocated. [17] describes an algorithm which optimally allocates bits between a set of scalar

quantizers and subtree quantizers, and we use a slightly modi�ed version of this algorithm for our experiments.

We sketch the algorithm and our modi�cations here and refer the reader to [17] for details.

The set of wavelet coe�cients to be quantized forms a tree T ; each leaf of the tree contains the triple of wavelet

coe�cients < I;  
j

!;k;l
> for ! 2 
. Each node and its descendents constitute a wavelet subtree. We traverse

the tree from the root to the leaves. At each node we have three options. We can quantize the subtree at this

node via self-quantization, we can quantize the subtree as a zerotree, or we can scalar quantize the coe�cients

at the node and recursively repeat the decision process for the children of the node. Nodes at which subtrees are

self-quantized or quantized to zerotrees are called terminal nodes. This set of choices generates a decision tree

S. We must in addition decide how we will quantize wavelet coe�cients for di�erent scales and orientations. We

choose a vector q of quantizer resolutions from an admissible set Q.

Our goal is to minimize the encoding distortion D(q; S) for a particular decision tree and set of quantizers.

We have a constraint on the total number of bits used, so total bits used by S and q must satisfy R(q; S) � R0.

We can transform this constrained problem into an unconstrained problem via Lagrange multipliers. We seek to

minimize the Lagrangian cost J(q; S) = D(q; S) + �R(q; S) where � here depends on our constraint R0.

We initiate the algorithm with a �xed � and an S such that the entire tree is scalar-quantized. The algorithm

proceeds iteratively in two stages. First, given S and �, we �nd an optimal allocation of quantizer resolutions q

using a Lagrangian algorithm [16] (we assume uniformly spaced quantization). We next perform an optimization

step on our decision tree. For each parent of a terminal node in the tree, we determine whether a change in

the decision tree at that point will reduce the Lagrangian cost J(q; S) for the tree, and we modify the node

accordingly. We repeat this process for the parents of the parents of terminal nodes, and so on, working up the

tree until all nodes have been checked. This process creates the optimal balance of scalar quantization at the

resolutions in q and subtree quantization. The restructuring of the decision tree a�ects the performance of the

scalar quantizers (because it alters the distribution of the coe�cients), so after the decision tree step we perform

another cycle of optimization q followed by optimization of S and so on. The process terminates when no further

changes are made to the decision tree S. Once the �nal decision tree has been determined, the wavelet coe�cients,

self-quantization parameters, and the choices in the decision tree are entropy coded using an adaptive arithmetic

coder.

6 RESULTS

Figure 6 compares the peak signal to noise ratios of the 512 � 512 Lena image compressed by standard

fractal compression methods and by our self-quantization of subtrees (SQS) scheme. Figure 5 shows the resulting



Figure 2: The top left shows the 512� 512 Lena image compressed at 60.6:1 (PSNR = 24.9 dB) using a disjoint

domain pool and the quadtree coder from Fisher. The top right image has been compressed at 65.0:1 (PSNR =

28.2 dB) using our SQS scheme. This SQS scheme uses exactly the same domain pool as the quadtree, but our

analysis of the SQS scheme enables us to make much more e�cient use of bits. The bottom left image has been

compressed at 63.2:1 (PSNR = 29.9) using the same SQS scheme but with a smooth wavelet basis. Blocking

artifacts have been completely eliminated. The bottom right image has been compressed at 63.1:1 (PSNR =

30.05) using a hybrid SQS/wavelet coder. The gain from increased 
exibility is o�set by increased decision tree

cost.
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Figure 3: Peak signal to noise ratios for the 512� 512 Lena image compressed by the quadtree fractal coder of

Fisher, an adaptive Haar SQS scheme, an adaptive HV tree fractal coder of Fisher and Menlove, an adaptive

spline SQS scheme, a hybrid spline/wavelet SQS scheme, and Shapiro's embedded zerotree wavelet coder.

decompressed images. The lowest line in Figure 6, 'Fractal Quadtree', is from the quadtree block coder listed in

[8] using a disjoint domain pool as described in section 4.1 constructed from domain blocks of size 8 � 8 up to

128�128. (We note that quadtree schemes perform much better for larger domain pools; the point is to illustrate

that our SQS scheme makes more e�ective use of existing resources.) The next line, 'Haar SQS', is from our

adaptive SQS scheme using Haar wavelets. For comparison purposes, all range blocks in this SQS scheme have

been coded either via self-quantization or by zerotrees. As we see from the decompressed images in Figure 5, the

SQS scheme produces dramatically improved results using exactly the same domain pool.

There are several reasons for the SQS scheme's improved performance. First and foremost, our improved

understanding of our compression mechanism enables us to partition bits e�ciently between wavelet coe�cients

and subtrees. Indeed, our SQS scheme's similarity to existing wavelet transform coders allows us to use o�-

the-shelf near-optimal bit-allocation schemes. Secondly, smooth regions in the image contain subtrees consisting

almost entirely of near-zero coe�cients. We can store such subtrees compactly using zerotrees. Finally, our

storage of the coarse-scale portion of the image in transformed form is very e�cient. For low compression ratios,

few zerotrees are used, and the decrease in error due to optimal bit alloction for the coe�cients is small, so the

improvement obtained from our algorithm is smaller.

The performance of fractal block coders is substantially improved by enlarging the domain pool. The third

line from the bottom of Figure 6, 'Fractal HV Tree', shows the PSNR for a fractal block encoding of rectangular

range blocks using rectangular domain blocks [7]. The use of rectangular blocks introduces an additional degree

of freedom in the construction of the domain pool and gives increased 
exibility to the partitioning of the image.

The reconstructed images in [7] show the coding to be of high quality. In fact, the authors claim that their

algorithm gives the best results of any fractal block coder in the literature. The enlarged domain pool results

in high computational complexity for coding, however. Encoding times for the plotted points are as high as 46

CPU-hours on a Silicon Graphics Personal IRIS 4D/35.

The fourth line in Figure 6, 'Spline SQS', represents an alternative method of improving compressed image

�delity: we change bases. The Haar basis performs poorly for image compression because quantization introduces



horizontal and vertical discontinuities into the decoded image. Such artifacts yield poor subjective image quality

since the human visual system is especially sensitive to horizontal and vertical lines. We replace the Haar basis

with a biorthogonal spline basis designed for image compression (the spline variant with less dissimilar lengths)

from [1] and use the same disjoint domain pool as with the Haar SQS scheme. There is a substantial improvement

in perceived image quality over the Haar SQS scheme. In particular, blocking artifacts, a hallmark of fractal block

coding schemes, have been completely eliminated. An additional advantage of this biorthogonal basis over the

Haar is that the increased number of vanishing moments yields more zerotrees which can be coded very cheaply.

Allowing the Lagrangian bit allocator the additional option of coding subtrees by storing their wavelet coe�-

cients yields the top solid line, 'Hybrid Spline SQS'. This increased 
exibility yields improved coding for subtrees

which are not well-represented by self-quantization. The improvement in performance is o�set slightly by the

increased cost of storing the decision tree for the compressed image. We note that [17] obtains some savings in the

cost of storing the decision tree by predicting decisions conditioned on the values of the parent wavelet coe�cients.

Similar predictions are possible for this hybrid wavelet/SQS coder but have not been used here. We see that the

performance of this hybrid coder is comparable to that of Shapiro's embedded wavelet zerotree encoder [15].
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