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Abstract

Computing the optimal expansion of a signal in a redundant dictionary of waveforms is an NP-hard

problem. We introduce a greedy algorithm, called a matching pursuit, which computes a sub-

optimal expansion. The dictionary waveforms which best match a signal's structures are chosen

iteratively. An orthogonalized version of the matching pursuit is also developed. Matching pursuits

are general procedures for computing adaptive signal representations. With a dictionary of Gabor

functions, a matching pursuit de�nes an adaptive time-frequency transform. We derive a signal

energy distribution in the time-frequency plane which does not contain interference terms, unlike

the Wigner and Cohen class distributions. Matching pursuits are chaotic maps whose attractors

de�ne a generic noise with respect to the dictionary. We derive an algorithm that isolates the

coherent structures of a signal and describe an application to pattern extraction from noisy signals.

1 Introduction

Flexible decompositions are particularly important for representing signal components whose lo-

calizations in time and frequency vary widely. The goal is to expand a signal into waveforms whose

time-frequency properties are adapted to the signal's local structures. The waveforms we use for

these expansions are called time-frequency atoms. For example, impulses need to be decomposed

into functions well-localized in time, while spectral lines are better represented by waveforms which

have a narrow frequency support. When the signal includes both of these elements, the time-

frequency atoms must be adapted accordingly. We must use a procedure that selects from all the

time-frequency atoms of a large dictionary the waveforms that are best adapted to decomposing

the signal structures.

Computing the optimal approximation of a signal in a redundant dictionary is an NP-hard

problem. We therefore introduce a sub-optimal greedy algorithm, called a matching pursuit, which

decomposes any signal into a linear expansion of waveforms belonging to a redundant collection

called a dictionary. These waveforms are selected in order to best match the signal's structures.

Although matching pursuits are non-linear, they possess an energy conservation relation like an

orthogonal expansion which guarantees their convergence. We also introduce an orthogonalized

version of a matching pursuit.

The application of matching pursuits to adaptive time-frequency decompositions is described

in section 6. The signal is decomposed into a selected set of time-frequency atoms, the dilations,

translations, and modulations of a single window function. We derive a time-frequency energy

distribution by adding the Wigner distributions of the selected time-frequency atoms. Unlike

the Wigner distribution or Cohen's class distributions, this energy distribution does not include

interference terms and thus provides a clear picture in the time-frequency plane.
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Matching pursuits are chaotic maps whose properties are studied. The approximation error of

the pursuit converges to an attractor which corresponds to a class of signals which are not e�ciently

represented by the waveforms of the dictionary. Measurement of this convergence to the attractor

allows us to separate our decomposition into portions which are coherent and incoherent with

respect to the dictionary. Isolating the coherent part of a signal enables us to perform denoising.

Notation

The space L2(R) is the Hilbert space of complex valued functions such that

jjf jj2 =
Z +1

�1

jf(t)j2dt < +1: (1)

The inner product of f(t); g(t) 2 L2(R) is de�ned by

< f; g >=

Z +1

�1

f(t)�g(t)dt; (2)

where �g(t) is the complex conjugate of g(t). The Fourier transform of f(t) 2 L2(R) is written f̂(!)
and de�ned by

f̂ (!) =

Z +1

�1

f(t)e�i!tdt: (3)

2 Time-Frequency Atoms

A general family of time-frequency atoms can be generated by scaling, translating and modulating

a single window function g(t) 2 L2(R). We suppose that g(t) is real and centered at 0. We also

impose that jjgjj = 1, that the integral of g(t) is non-zero, and that g(0) 6= 0. For any scale s > 0,

frequency modulation �, and translation u, we denote 
 = (s; u; �) and de�ne

g
(t) =
1p
s
g(
t� u

s
)ei�t: (4)

The index 
 is an element of the set � = R
+ �R2. The factor 1p

s
normalizes jjg
(t)jj to 1. The

function g
(t) is centered at the abscissa u and its energy is concentrated in a neighborhood of u of

size proportional to s. Its Fourier transform is centered at the frequency ! = � and has its energy

concentrated in a neighborhood of �, of size proportional to 1=s. For our numerical examples we

use the Gaussian window g(t) = 21=4e��t
2

.

The dictionary of time-frequency atomsD = (g
(t))
2� is a very redundant set of functions that

includes window Fourier frames and wavelet frames [3]. When the signals include time-frequency

structures of very di�erent types, one cannot choose a priori a frame that is well adapted to

performing the expansion. Instead, we need to �nd the atoms in the dictionary that best match

each given signal's structures in order to perform a compact decomposition. In the next section we

develop an algorithm for computing such adaptive decompositions in redundant dictionaries.
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3 Matching Pursuits

LetH be a signal space. A dictionary forH is a family D = (g
)
2� of vectors inH, such that linear

combinations of the g
 are dense in H and for which jjg
 jj = 1. The smallest possible dictionary is a

basis of H; general dictionaries are redundant families of vectors. A signal does not have a unique

representation as a sum of elements of a redundant dictionary. Unlike the case of a basis, we have

some degrees of freedom in choosing a signal's particular representation. This freedom allows us to

choose a subset of the dictionary that is tailored to the signal in question and which provides the

most compact representation. We can choose a subset of the dictionary for which the signal energy

is concentrated in as few terms as possible. The chosen vectors highlight the predominant signal

features.

Let D be dictionary of vectors in an N -dimensional Hilbert space. For any given � 2 (0; 1), we

de�ne an optimal approximation of f 2 H to be an expansion

~f =

�NX
n=1

ang
n ;

where the an and g
n 2 D are chosen in order to minimize

jjf � ~f jj:

When the dictionary is redundant, we can show that �nding an optimal solution is a funda-

mentally intractable problem. If we restrict the number of bits of an to �(N j) and the number of

vectors in D to �(Nk), for �xed j; k, then we can prove [4] that �nding an optimal expansion is

NP-hard.

Because of the di�culty of �nding optimal solutions, we instead develop a greedy algorithm that

computes a good sub-optimal approximation. Let f 2 H. We want to compute a linear expansion

of f over a set of vectors selected from D which best matches the inner structures of f . A matching

pursuit is a greedy algorithm which successively approximates f with orthogonal projections onto

elements of D. Let g
0 2 D. The vector f can be decomposed into

f =< f; g
0 > g
0 +Rf; (5)

where Rf is the residual vector after approximating f in the direction of g
0 . Clearly g
0 is

orthogonal to Rf , hence

jjf jj2 = j< f; g
0 > j2 + jjRf jj2: (6)

To minimize jjRf jj, we must choose g
0 2 D such that j< f; g
0 > j is maximal. In some cases, it is

only possible to �nd a vector g
0 that is close to the maximum in the sense that

j< f; g
0 > j � � sup

2�

j< f; g
 > j; (7)

where � 2 (0; 1] is an optimality factor.
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We sub-decompose the residue Rf by projecting it onto the vector of D that best matches

Rf , as was done for f . This projection of Rf generates a second residue, R2f , which we again

decompose to obtain a third residue, and so on.

We describe the algorithm inductively. Let R0f = f . We suppose that we have computed the

nth order residue Rnf , for n � 0. We choose with a choice function C an element g
n 2 D which

closely matches the residue Rnf in the sense that

j< Rnf; g
n > j � � sup

2�

j< Rnf; g
 > j: (8)

The residue Rnf is sub-decomposed into

Rnf =< Rnf; g
n > g
n +Rn+1f; (9)

which de�nes the residue at order n+1. Since Rn+1f is orthogonal to g
n , we have

jjRnf jj2 = j< Rnf; g
n > j2 + jjRn+1f jj2: (10)

Let us carry this decomposition up to order m. We decompose f into the telescoping sum

f =
m�1X
n=0

�
Rnf � Rn+1f

�
+Rmf: (11)

Equation (9) yields

f =
m�1X
n=0

< Rnf; g
n > g
n +Rmf: (12)

Similarly, we write jjf jj2 as a telescoping sum

jjf jj2 =
m�1X
n=0

�
jjRnf jj2 � jjRn+1f jj2

�
+ jjRmf jj2 (13)

which we combine with (10) to obtain an energy conservation equation

jjf jj2 =
m�1X
n=0

j< Rnf; g
n > j2 + jjRmf jj2: (14)

Thus, the original vector f is decomposed into a sum of dictionary elements which are chosen to best

match its residues. Although this decomposition is non-linear, we maintain an energy conservation

as though it were a linear, orthogonal decomposition. An important issue is to understand the

behavior of the residue Rmf when m increases. By adapting a result proved by Jones [9] for

projection pursuit algorithms [5], one can prove [10] that the matching pursuit algorithm converges,

even in in�nite dimensional spaces.
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Theorem 1 Let f 2 H. The residue Rmf de�ned by the induction equation (9) satis�es

lim
m!+1

jjRmf jj = 0: (15)

Hence

f =
+1X
n=0

< Rnf; g
n > g
n ; (16)

and

jjf jj2 =
+1X
n=0

j< Rnf; g
n > j2: (17)

When H is of �nite dimension, jjRmf jj decays exponentially to zero.

4 Implementation of Matching Pursuits

When the dictionary is very redundant, the search for the vectors that best match the signal

residues can be limited to a sub-dictionary D� = (g
)
2�� � D. We suppose that �� is a �nite set

of indices from � such that for any f 2 H

sup

2��

j< f; g
 > j � � sup

2�

j< f; g
 > j: (18)

Depending upon � and the dictionary redundancy, the set �� can be much smaller than �. The

matching pursuit is initialized by computing the inner products (< f; g
 >)
2�� , and continues by

induction as follows. Suppose that we have already computed (< Rnf; g
 >)
2�� , for n � 0. We

search in D� for an element g~
n for which

j< Rnf; g~
n > j = max

2��

j< Rnf; g
 > j: (19)

We can �nd a dictionary element that matches f even better than g~
n by using Newton's method

to maximize j< f; g
 > j for 
 2 � in a neighborhood of g~
n . We then have

j< Rnf; g
n > j � j< Rnf; g~
n > j � � sup

2�

j< Rnf; g
 > j: (20)

The choice function mentioned in section 3 is de�ned indirectly by this double search strategy.

Once the vector g
n is selected, we compute the inner product of the new residue Rn+1f with any

g
 2 D�, with an updating formula derived from equation (9)

< Rn+1f; g
 >=< Rnf; g
 > � < Rnf; g
n > < g
n ; g
 > : (21)

Since we have already computed < Rnf; g
 > and < Rnf; g
n >, this update requires only that we

compute < g
n ; g
 >. Dictionaries are generally built so that this inner product is computed with

a small number of operations. We describe in [10] how to compute e�ciently the inner product of

two discrete Gabor atoms, in O(1) operations.

5



Let I be the number of operations required to compute < g
n ; g
 > and let Z be the average

number of g
's in D� for which < g
n ; g
 > is nonzero. In [4] we show that p iterations of a pursuit

requires O(pIZ) operations.

The number of times we sub-decompose the residues of a given signal f depends upon the

desired precision of the approximation, �. The number of iterations we require is the minimum p

for which

jjRpf jj = jjf �
p�1X
n=0

< Rnf; g
n > g
n jj � �jjf jj: (22)

From the energy conservation relation (14), we see that

jjf jj2 �
p�1X
n=0

j< Rnf; g
n > j2 � �2jjf jj2: (23)

Since we do not compute the residue Rnf at each iteration, we test condition (23) to determine

when to stop the decomposition.

5 Back-projection and Orthogonal Pursuits

After m iterations, a matching pursuit decomposes a signal f into a sum of m dictionary vectors

and an error term. We have

f =
m�1X
n=0

< Rnf; g
n > g
n +Rmf: (24)

Suppose that < g
n ; g
n+1 >= � 6= 0. Rn+1f is obtained by removing the component of Rnf in the

direction of g
n ;

Rn+1f = Rnf� < Rnf; g
n > g
n : (25)

Similarly, Rn+2f is obtained from Rn+1f by removing the component of Rn+1f in the direction of

g
n+1 . Because < g
n ; g
n+1 >6= 0, we �nd that the component of Rn+2f in the g
n direction is no

longer zero.

< Rn+2f; g
n > = < Rn+1f; g
n > � < Rn+1f; g
n+1 >< g
n+1 ; g
n >

= �� < Rn+1f; g
n+1 > : (26)

In removing g
n+1 , we have replaced a small portion of the g
n component which we previously

removed.

Let Vm be the space generated by (g
n)0�n<m and PVm
be the orthogonal projector onto Vm.

For any f 2 H, PVm
f is the closest vector to f that can be written as linear expansion of the m

vectors (g
n)0�n<m. We obtain from (24) that

PVm
f =

m�1X
n=0

< Rnf; g
n > g
n +PVm
Rmf: (27)
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When the family of vectors (g
n)0�n<m is not orthogonal, which is generally the case, thenPVm
Rmf 6=

0. The computation of

PVm
Rmf =

m�1X
n=0

xng
n ; (28)

is called a back-projection. The values xn give corrections to the coe�cients < Rnf; g
n > which

improve the linear expansion approximation to f . The approximation error for the corrected sum,

PWm
f = f �PVm

f (29)

is the orthogonal projection of f on the space Wm, the orthogonal complement of Vm in H.

The calculation of the coe�cients (xn)0�n<m requires that we solve the following linear system.

For any g
k , 0 � k < m,

< PVm
Rmf; g
k >=< Rmf; g
k >=

m�1X
n=0

xn < g
n ; g
k > : (30)

Let us denoteX = (xn)0�n<m and Y = (< Rmf; g
k >)0�k<m. Let G = (< g
n ; g
k >)0�k<m;0�n<m

be the Gram matrix of the selected vectors. The linear system of equations (30) can be written

Y = GX . A solution of this system is computed e�ciently with a conjugate gradient algorithm

[10]. If H is of �nite dimension N , there are many classes of dictionaries for which any collection

of N distinct dictionary vectors is a basis of H. This is the case for the Gabor dictionary used for

time-frequency decompositions. Hence, after selecting N di�erent vectors with a matching pursuit,

the back-projection reduces to 0 the remaining residue.

Instead of recovering the orthogonal projection PVm
f at the end of the matching pursuit, we

can modify the pursuit algorithm to prevent the replacement of components which were previously

removed, which we saw in (26). We accomplish this by orthogonalizing the set of dictionary

vectors as we proceed with the decomposition. This iterative orthogonalization is equivalent to

performing the back-projection described above at each step of the decomposition, but is much

more e�cient. This type of algorithm was �rst introduced for control applications [1] and also

studied independently from this work by Pati et al. [11]. It has the advantage of providing better

approximations than the matching pursuit algorithm, but it requires much more computation and

can introduce numerical instabilities into the expansions. We describe by induction this orthogonal

pursuit.

For n = 0, we set R0f = f . Like in a matching pursuit, we de�ne an optimality factor �, with

0 < � � 1, and choose g
0 2 D which satis�es

j< f; g
0 > j � � sup

2�

j< f; g
 > j: (31)

The space V1 is generated by the single vector g
0 . We use a Gram-Schmidt orthogonalization to

generate a basis for V1. The �rst orthogonal basis vector for V1 is u0 = g
0 . The next residue is

de�ned by

Rf = f �PV1
f = f� < f; g
0 > g
0 : (32)
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We explain by induction how to compute the orthogonal residue Rn+1f from Rnf . We suppose

that we have already selected n vectors (g
p)0�p<n that are linearly independent and that we have

computed the corresponding Gram-Schmidt orthogonal basis (up)0�p<n of the space Vn spanned

by these n vectors. We have

Rnf = f � PVn
f: (33)

We choose a vector g
n 2 D which satis�es

j< Rnf; g
n > j � � sup

2�

j< Rnf; g
 > j: (34)

If < Rnf; g
n >6= 0, then the vector g
n cannot belong to the space Vn since Rnf is orthogonal

to Vn. Hence the vectors (g
p)0�p�n are linearly independent. The next vector un of the Gram-

Schmidt basis is obtained by subtracting from g
n its projection on the space Vn

un = g
n �
n�1X
p=0

< g
n ; up >

jjupjj2 up: (35)

The family (up)0�p�n is an orthogonal basis of Vn+1. The residue R
n+1f is de�ned by

Rn+1f = f � PVn+1
f = f �

nX
p=0

< f; up >

jjupjj2 up: (36)

This can also be rewritten

Rn+1f = Rnf � < Rnf; un >

jjunjj2 un: (37)

Since Rnf is orthogonal to the vectors (g
p)0�p<n, equation (35) implies that < Rnf; un >=<

Rnf; g
n > and thus

Rn+1f = Rnf � < Rnf; g
n >

jjunjj2 un: (38)

This equation is similar to the residue updating equation (9) of a matching pursuit, but instead of

subtracting a vector in the direction of g
n , we subtract a component in a direction orthogonal to

all vectors previously selected. Since Rn+1f and un are orthogonal,

jjRn+1f jj2 = jjRnf jj2 � j < Rnf; g
n > j2
jjunjj2 : (39)

An orthogonal pursuit guarantees that the selected vectors (g
n)0�n�m are linearly independent,

and computes the best possible approximation of f from these vectors. Since R0f = f , we derive

from equations (38) and (39) that for any m > 0

f =
X

0�n<m

< Rnf; g
n >

jjunjj2 un +Rmf; (40)
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and

jjf jj2 =
X

0�n<m

j < Rnf; g
n > j2
jjunjj2 + jjRmf jj2: (41)

The derivations are similar to those for equations (12) and (14). The next theorem is similar to

Theorem 1 and guarantees the convergence of the orthogonal pursuit [4].

Theorem 2 Let f 2 H. Let N be the dimension of H (N may be in�nite). The orthogonal

matching pursuit converges in M � N iterations (M may be in�nite if N is in�nite). The residue

Rnf de�ned inductively by equation (38) satis�es

lim
n!M

jjRnf jj = 0; (42)

f =
X

0�n<M

< Rnf; g
n >

jjunjj2 un; (43)

and

jjf jj2 =
X

0�n<M

j < Rnf; g
n > j2
jjunjj2 : (44)

If H is of �nite dimension, the orthogonal pursuit converges in a �nite number of iterations.

Although the orthogonalized version of the pursuit has better convergence properties, it has

several disadvantages. Because the updating relation (38) involves the orthogonalized dictionary

vectors, un, instead of the g
n , updating the inner products < Rnf; g
 > requires much more

work. In [4] we show that computing p iterations of an orthogonalized pursuit requires O(p2IZ)

operations, as compared toO(pIZ) for a non-orthogonal pursuit. Here I is the number of operations

required to compute < g
n ; g
 > and Z is the average number of g
's in D� for which < g
n ; g
 >

is nonzero. So for p iterations, the orthogonalized pursuit is O(p) times slower. Unless we are

interested in decomposing signals into a very small number of elements, the orthogonalized pursuit

will be much slower.

A second disadvantage of the orthogonalized pursuit is that we obtain an expansion of our

signal in the orthogonalized basis un rather than in the g
n 's. The process of transforming the sum

of the un's into a sum of g
n 's can introduce instabilities into the expansion. We are looking for

coe�cients (�n)0�n<M such that

f =
X

0�n<M

�ng
n : (45)

Since un 2 Vn and (g
p)0�p�n is a basis of Vn, we can decompose un into

un =
nX

p=0

bp;ng
p : (46)

These coe�cients are computed during the pursuit. Inserting expression (46) into (43) yields

f =
X

0�n<M

< Rnf; g
n >

jjunjj2
nX

p=0

bp;ng
p : (47)
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One could naively try to rearrange the terms of this double summation to obtain

f =
X

0�p<M

g
p
X

p�n<M

bp;n
< Rnf; g
n >

jjunjj2 : (48)

However, when M = +1 the in�nite sum over n that de�nes each coe�cient �p may not converge.

Such a situation arises when the family (g
n)0�n<M is not a Riesz basis of the closed space VM that

it generates. For such a case, we cannot obtain an expansion of the form (45) from the orthogonal

matching pursuit. If the signal space H has a �nite dimension N , thenM is �nite, so we can always

invert the two sums of (47) to obtain (48). The basis (g
n)0�n<M may, however, be very badly

conditioned in which case we can have numerical instabilities, in which caseX
0�n<M

j�nj2 >> jjf jj2: (49)

We �nd that the orthogonalized pursuit converges more quickly, but is much harder to compute

and potentially less numerically stable than the non-orthogonalized pursuit. Figure 1 compares the

convergence rates for an orthogonal matching pursuit and a non-orthogonal matching pursuit for a

synthetic signal of 512 samples. The bene�ts of the orthogonalization do not become evident until

after roughly 150 iterations, but in the tail of the expansion the convergence of the orthogonalized

pursuit is much faster. For our denoising algorithm, we are uninterested in the tail of the expansion,

so for such an application the orthogonalized pursuit gives little advantage.

6 Matching Pursuits With Time-Frequency Dictionaries

For dictionaries of time-frequency atoms, a matching pursuit yields an adaptive time-frequency

transform. It decomposes any function f(t) 2 L2(R) into a sum of complex time-frequency atoms

that best match its residues. This section studies the properties of this particular matching pursuit

decomposition. We derive a new type of time-frequency energy distribution by summing the Wigner

distributions of each time-frequency atom.

Since a time-frequency atom dictionary is complete in L2(R), Theorem 1 implies that a matching

pursuit decomposes any function f 2 L2(R) into

f =
+1X
n=0

< Rnf; g
n > g
n ; (50)

where 
n = (sn; un; �n) and

g
n(t) =
1p
sn
g(
t� un

sn
)ei�nt: (51)

These atoms are chosen to best match the residues of f .

We derive a new time-frequency energy distribution from the decomposition of a function f(t)

within a time-frequency dictionary by adding the Wigner distributions of each selected atom. The

cross Wigner distribution of two functions f(t) and h(t) is de�ned by

W [f; h](t; !) =
1

2�

Z +1

�1

f(t+
�

2
)h(t � �

2
)e�i!�d�: (52)
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The Wigner distribution of f(t) is Wf(t; !) = W [f; f ](t; !). Since the Wigner distribution is

quadratic, we derive from the atomic decomposition (50) of f(t) that

Wf(t; !) =
+1X
n=0

j< Rnf; g
n > j2Wg
n(t; !) (53)

+
+1X
n=0

+1X
m=0;m 6=n

< Rnf; g
n > < Rmf; g
m >W [g
n ; g
m](t; !):

The double sum corresponds to the cross terms of the Wigner distribution. It contains the terms

that one usually tries to remove in order to obtain a clear picture of the energy distribution of f(t)

in the time-frequency plane. We therefore only keep the �rst sum and de�ne

Ef(t; !) =
+1X
n=0

j< Rnf; g
n > j2Wg
n(t; !): (54)

A similar decomposition algorithm over time-frequency atoms was derived independently by Qian

and Chen [12], in order to de�ne this energy distribution in the time-frequency plane. From the

dilation and translation properties of the Wigner distribution and the expression (51) of a time-

frequency atom, we derive that for 
 = (s; �; u)

Wg
(t; !) = Wg(
t� u

s
; s(! � �)); (55)

and hence

Ef(t; !) =
+1X
n=0

j< Rnf; g
n > j2Wg(
t� un

sn
; sn(! � �n)): (56)

The Wigner distribution also satis�es

Z +1

�1

Z +1

�1

Wg(t; !)dt d! = jjgjj2 = 1; (57)

so the energy conservation equation (17) implies that

Z +1

�1

Z +1

�1

Ef(t; !)dt d! = jjf jj2: (58)

We can thus interpret Ef(t; !) as an energy density of f in the time-frequency plane (t; !). Unlike

the Wigner and the Cohen class distributions, it does not include cross terms. It also remains

positive if Wg(t; !) is positive, which the case when g(t) is Gaussian. On the other hand, the

energy density Ef(t; !) does not satisfy marginal properties, as opposed to certain Cohen class

distributions [2]. However, the importance of these marginal properties for signal processing is not

clear. If g(t) is the Gaussian window

g(t) = 21=4e��t
2

; (59)
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then

Wg(t; !) = 2e�2�(t
2+( !

2�
)2): (60)

The time-frequency atoms g
(t) are Gabor functions, and the time-frequency energy distribution

Ef(t; !) is a sum of Gaussian blobs whose locations and variances along the time and frequency

axes depend upon the parameters (sn; un; �n).

Figure 2 is a signal f of 512 samples that has been built by adding waveforms of di�erent time-

frequency localizations. It is the sum of cos(b(1 � cos(ax))), two truncated sinusoids, two dirac

functions, and cos(cx). Figure 3 shows the time-frequency energy distribution Ef(t; !). Since

Ef(t; !) = Ef(t;�!), we only display its values for ! � 0. Each Gabor time-frequency atom

selected by the matching pursuit is an elongated Gaussian blob in the time-frequency plane. We

see clearly the arch of the the cos(b(1� cos(ax))). The truncated sinusoids are in the center and

upper left-hand corner of the graph. The horizontal line corresponds to cos(cx) and the two vertical

lines are the Dirac functions.

Figure 4 is the graph of a digitized recording of a female speaker pronouncing the word,

\wavelets," sampled at 11.125 kHz. From the time-frequency energy density shown in Figure 5, we

can see the initial low-frequency onset of the \w" followed by the long \a" and its harmonics. The

central cluster of energy corresponds to the \l" and the short \e" of the second syllable. The last

third of the time-frequency plane is the \s," which resemebles a band-limited white noise. Most of

the signal energy is characterized by few time-frequency atoms. For n = 300 atoms, jjR
nf jj
jjf jj

= 0:073,

although the signal has 8192 samples, and the sound recovered from these atoms is of excellent

quality.

Figure 6 shows a signal obtained by adding a Gaussian white noise to the speech recording given

in Figure 4, with a signal to noise ratio of 2 dB. Figure 7 is the time-frequency energy distribution

of this noisy signal. The white noise generates time-frequency atoms spread across the whole time-

frequency plane, but we can still distinguish the time-frequency structures of the original signal

because their energy is more concentrated than the noise.

7 Chaos in Matching Pursuits

For signal spaces with �nite dimension, the energy of the residue converges exponentially to zero.

We renormalize the signal residues in order to study their properties when the number of iterations

increases, and de�ne

~Rnf =
Rnf

jjRnf jj : (61)

The renormalized matching pursuit mapM maps the nth renormalized residue of a matching pursuit

to the n+ 1st.

M( ~Rnf) = ~Rn+1f: (62)

At each iteration the renormalized matching pursuit map removes the largest dictionary com-

ponent of the residue and renormalizes the new residue. This action is much like that of a left-shift

operator acting on a base-N decimal: the shift operator removes the most signi�cant digit of the

12



expansion and then multiplies the decimal by N , which is analogous to a renormalization. Let �N

be the set of all base N decimals. The left-shift map LN : �N ! �N is formally de�ned by

LN(0:s1s2s3 : : :) = 0:s2s3s4 : : : : (63)

where 0:s1s2 : : : is the base-N decimal
P
1

k=1
sk
Nk . The left shift map is known to be a chaotic

map. The topological properties of the renormalized matching pursuit map are similar to those

of the left shift map, at least locally. We proved [4] that for a particular dictionary in R3, the

renormalized matching pursuit map is topologically equivalent to a shift map, which proves that

this renormalized matching pursuit map is a chaotic map with well-understood properties.

Experimental data suggest that the residues of a normalized matching pursuit converge to a

chaotic attractor in high dimensional spaces as well. This is proved [4] for a simple dictionary com-

posed of Diracs and complex exponentials, and the similar behavior is observed for more complicated

dictionaries such as the one composed of Gabor functions. The residues converge to realizations of

a speci�c process that we call dictionary noise. If the dictionary is invariant when we translate its

elements or multiply them by a complex exponential, one can then prove [4] that this process is

white and stationary. This is the case for a Gabor dictionary. Realizations of a dictionary noise are

signals whose inner products with elements of the dictionary are uniformly small. In other words,

such signals have no structure that is particularly coherent with respect to the dictionary.

The correlation ratio, de�ned by

�( ~Rmf) = sup

2�

j < ~Rmf; g
 > j (64)

is an important measure of the degree to which structures in the residue ~Rmf resemble dictionary

elements. A signal f which possess structures which are well-represented by dictionary elements

will have large values of �(f). As the matching pursuit proceeds, these structures are removed,

and �(Rmf) decreases. As the residues approach the attractor, we �nd that �( ~Rmf) approaches a

dictionary-dependent constant, �e.

To determine whether a given residue Rmf is close to the attractor, we compute �( ~Rmf) and

compare it to �e. If �( ~R
mf) � �e, then Rmf does not include any more coherent component with

respect to the dictionary. The coherent components of f , then, are the �rst m selected dictionary

vectors (g
n)0�n<m.

The expected value �e has been measured numerically for a Gabor dictionary [10]. The values

of �( ~Rmf) as a function of m for the \wavelets" signal and the noisy \wavelets" signal are shown

in Figure 8. The coherence ratio for the noisy signal converges much more quickly to �e because

the noise has diluted the coherent structures. We �nd that the noisy speech signal in Figure 6 has

m = 119 coherent structures, whose time-frequency distributions are shown in Figure 10. Figure 9

is the signal reconstructed from these time-frequency atoms. The SNR of the reconstructed signal

is 8.7 dB. The white noise has been removed and this signal has a good auditory quality because

the main time-frequency structures of the original speech signal have been retained.
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8 Conclusion

Matching pursuits provide extremely 
exible signal representations because the decomposition is

adapted to the structures of the signal, and because the set of waveforms over which we decompose is

not limited to any single basis. By using a dictionary of time-frequency atoms, we have obtained an

adaptive time-frequency energy distribution for signals. The convergence properties of the pursuit

enable us to de�ne a notion of coherence with respect to a dictionary, and this enables us to perform

denoising of signals.

9 Acknowledgements

This work was supported by the AFOSR grant F49620-93-1-0102, ONR grant N00014-91-J-1967 and

the Alfred Sloan Foundation. Geo�rey Davis is supported by an ONR/ASEE graduate fellowship.

References

[1] S. Chen, S. A. Billings, and W. Luo, \Orthogonal least squares methods and their application

to non-linear system identi�cation", International Journal of Control, vol. 50, No. 5, pp. 1873-

1896, 1989.

[2] L. Cohen, \Time-frequency distributions: a review" Proceedings of the IEEE, Vol. 77, No. 7,

pp. 941-979, July 1989.

[3] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Series in Appl. Math., SIAM, 1991.

[4] G. Davis, S. Mallat, and M. Avellaneda, \Chaos in Adaptive Approximations", Technical

Report, Computer Science, NYU, April 1994.

[5] J. H. Friedman and W. Stuetzle, \Projection pursuit regression," Journal of the American

Statistical Association, Vol. 76, pp. 817-823, 1981.

[6] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness, W. H. Freeman and Co., New York, 1979.

[7] R. Gray, \Vector quantization", IEEE Acoustic Speech and Signal Processing Magazine, April

1984.

[8] P. J. Huber, \Projection Pursuit", The Annals of Statistics, vol. 13, No. 2, p. 435-475, 1985.

[9] L. K. Jones, \On a conjecture of Huber concerning the convergence of projection pursuit

regression", The Annals of Statistics, vol. 15, No. 2, p. 880-882, 1987.

[10] S. Mallat and Z. Zhang \Matching Pursuit with Time-Frequency Dictionaries", IEEE Trans.

on Signal Processing, Dec. 1993.

14



[11] Y. C. Pati R. Rezaiifar, and P. S. Krishnaprasad, \Orthogonal Matching Pursuit: Recursive

Function Approximation with Applications to Wavelet Decomposition," Proceedings of the

27th Annual Asilomar Conference on Signals, Systems, and Computers, Nov. 1993.

[12] S. Qian and D. Chen, \Signal Representation via Adaptive Normalized Gaussian Functions,"

IEEE Trans. on Signal Processing, vol. 36, no. 1, Jan. 1994.

15


