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Abstract

The problem of optimally approximating a function with a linear expansion over a redundant

dictionary of waveforms is NP-hard. The greedy matching pursuit algorithm and its orthog-

onalized variant produce sub-optimal function expansions by iteratively choosing dictionary

waveforms that best match the function's structures. A matching pursuit provides a means of

quickly computing compact, adaptive function approximations.

Numerical experiments show that the approximation errors from matching pursuits initially

decrease rapidly, but the asymptotic decay rate of the errors is slow. We explain this behavior

by showing that matching pursuits are chaotic, ergodic maps. The statistical properties of the

approximation errors of a pursuit can be obtained from the invariant measure of the pursuit.

We characterize these measures using group symmetries of dictionaries and by constructing a

stochastic di�erential equation model.

We derive a notion of the coherence of a signal with respect to a dictionary from our

characterization of the approximation errors of a pursuit. The dictionary elements selected

during the initial iterations of a pursuit correspond to a function's coherent structures. The

tail of the expansion, on the other hand, corresponds to a noise which is characterized by the

invariant measure of the pursuit map.

When using a suitable dictionary, the expansion of a function into its coherent structures

yields a compact approximation. We demonstrate a denoising algorithm based on coherent

function expansions.

1 Introduction

For data compression applications and fast numerical methods it is important to accurately

approximate functions from a Hilbert space H using a small number of vectors from a given

family fg
g
2� . For any M > 0, we want to minimize the approximation error

�(M) = kf �
X

2IM

�
g
k
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where IM � � is an index set of cardinality M . If the family fg
g
2� is an orthonormal basis,

then because

�(M) =
X


2��IM
j < g
 ; f > j2;

the error is minimized by taking IM to correspond to the M vectors which have the largest

inner products (j < f; g
 > j)
2IM .
Depending upon the basis and the space H, it is possible to estimate the decay rate of the

minimal approximation error �0(M) = inf IM �(M) as M increases. For example, when fg
g
2�
is a wavelet basis the rate of decay of �0(M) can be estimated for functions that belong to

a particular class of Besov spaces[9]. Conversely, the rate of decay of �0(M) can be used to

determine to which Besov space in this class f belongs.

We can greatly improve these approximations to f by enlarging the collection fg
g
2�
beyond a basis. This enlarged, redundant family of vectors we call a dictionary. The advantage

of redundancy in obtaining compact representations can be seen by considering the problem

of representing a two-dimensional surface given by f(x; y) on a subset of the plane, I � I . An

adaptive square mesh representation of f in the Besov space B�
q (L

q(I)), where 1
q
= �+1

2
, can be

obtained using a wavelet basis. This wavelet representation can be shown to be asymptotically

near optimal in the sense that the decay rate of the error �(M) is equal to the largest decay

attainable by a general class of non-linear transform-based approximation schemes [10].

Even these near-optimal representations are constrained by the fact that the decomposi-

tions are over a basis. The regular grid structure of the wavelet basis prevents the compact

representation of many functions. For example, when f is equal to a basis wavelet at the largest

scale, it can be represented exactly by a expansion consisting of a single element. However,

if we translate this f by a small amount, then an accurate approximation can require many

elements. One way to improve our approximations is to add to the set fg
g
2� the collection

of all translates of the wavelets. The class of functions which can be compactly represented will

then be translation invariant. We can obtain even better compact approximations by expanding

the dictionary to contain the extremely redundant set of all piecewise polynomial functions on

arbitrary triangles.

When the dictionary is redundant, �nding a family of M vectors that approximates f with

an error close to the minimum �0(M) is clearly not achieved by selecting the vectors that have

maximal inner products with f . In section 2 we prove that for general dictionaries the problem

of �nding M -element optimal approximations belongs to a class of computationally intractable

problems, the set of NP-hard problems. It is widely believed (but unproven) that the number

of operations required to solve an NP-hard problem grows faster than any polynomial in the

input size [13].

Because of the di�culty of computing optimal expansions, we turn to suboptimal algorithms.

In section 3 we review the performance of greedy algorithms, called matching pursuits, that

were introduced in [24] [7]. We describe a fast implementation of these algorithms, and we give

numerical examples for a dictionary composed of waveforms that are well-localized in time and

frequency. Such dictionaries are particularly important for audio signal processing.

In our numerical experiments we �nd that the rate of decay of the greedy approximation
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error �(M) decreases as M becomes large. These observations are explained by showing that a

matching pursuit is a chaotic map which has an ergodic invariant measure. The proof of chaos

in section 5 is given for a particular dictionary in a low-dimensional space, and we show numer-

ical results which indicate that higher dimensional matching pursuits are also ergodic maps.

Although the chaotic properties prevent prediction of the exact values of the approximation

errors, the invariant measure provides a statistical description of these errors after a su�cient

number of iterations of the pursuit. In section 6 we characterize these invariant measures using

dictionary group invariances and by constructing a stochastic di�erential equation model for

the distribution of asymptotic approximation errors for a dictionary consisting of a Dirac and

a Fourier basis.

Our analysis of the asymptotic behavior of matching pursuits leads us to a notion of signal

coherence with respect to a dictionary. Matching pursuit approximations yield e�cient approx-

imations when the number of terms is small, giving expansions of functions into what we call

\coherent" structures. The error incurred by truncating function expansions when the conver-

gence rate �(M) becomes small corresponds to the realization of a process which is characterized

by the invariant measure of the pursuit. We call these realizations \dictionary noise," and we

describe an method for denoising signals based on our analysis of the convergence properties

of pursuits. In section 7 we compare the numerical performance and complexity of orthogonal

and non-orthogonal matching pursuits.

2 Complexity of Optimal Approximation

Let H be a Hilbert space. A dictionary for H is a family D = fg
g
2� of unit vectors in H
such that �nite linear combinations of the g
 are dense in H. The smallest possible dictionary
is a basis of H; general dictionaries are redundant families of vectors. Vectors in H do not have

unique representations as linear combinations of redundant dictionary elements. We prove

below that for a redundant dictionary we must pay a high computational price to �nd an

expansion with M dictionary vectors that yields the minimum approximation error.

De�nition 2.1 Let D be a dictionary of vectors in an N -dimensional Hilbert space H. Let

� > 0 and M � N . For a given f 2 RN an (�;M)-approximation is an expansion

~f =
MX
i=1

�ig
i ; (1)

where �i 2 C and g
i 2 D, for which

k ~f � fk < �:

An M-optimal approximation is an expansion that minimizes k ~f � fk.

If our dictionary is an orthogonal basis, we can obtain an M-optimal approximation for any

f 2 H by computing the inner products f< f; g
 >g
2� and sorting the dictionary elements so
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that j< f; g
i > j � j< f; g
i+1 > j. The signal ~f =
P
M

i=1 < f; g
i > g
i is then an M-optimal

approximation to f . In an N dimensional space, computing the inner products requires O(N2)

operations and sorting O(N logN) so the overall algorithm is O(N2).

Finding M-optimal approximations for general dictionaries is a much more di�cult problem.

We brie
y introduce some basic concepts from complexity theory in order to characterize the

di�culty of the M-optimal approximation problem. Further details may be found in [13] and

[4].

2.1 NP-completeness

A concrete problem is a map from a set of problem instances to a set of solutions. An instance

of a concrete problem is a binary string which speci�es all parameters and input data for the

problem. We �rst consider the set of concrete decision problems, concrete problems for which

the solution set is f0; 1g, i.e. problems with a \yes" or \no" answer.

A very important class of decision problems is the complexity class NP. The class NP

consists of the set of problems for which solutions can be veri�ed (but not necessarily solved) in

polynomial time. This is a less standard de�nition from [4] but is simpler than and equivalent

to the more commonly used de�nition of [13]. The veri�cation process makes use of outside

information, called a certi�cate which is not in general available to the algorithm computing

the solution.

A well-known problem in NP is the Travelling Salesman Problem (TSP). The salesman

seeks a path which visits each of n cities exactly once and which ends in the city in which he

started. The cost of travelling from city i to city j is an integer c(i; j). An instance of the TSP

consists of a binary encoding of n, a threshold C, and the set of costs c(i; j). The problem is

to determine whether there exists a path of total cost less than C. The TSP is in NP because

the list of cities in any path of total cost less than C that passes through each city exactly once

serves as a certi�cate. That is, we can verify the existence of a tour of the requisite cost in

polynomial time if we are given the list of cities which comprise the tour.

We can compare the relative di�culty of problems in NP through the use of polynomial-time

reducibility. We say that a problem Q1 is polynomial-time reducible to the problem Q2, and

write Q1 �P Q2, if we can solve Q1 by �rst mapping each instance of Q1 to an instance of Q2

in polynomial time, and then solving Q2. The problem Q2 is at least as hard as Q1 (up to a

polynomial amount of work) since any algorithm which solves Q2 can also be used to solve Q1.

A particularly important subset of NP is the set of NP-complete problems, the set fQ : Q 2
NP and Q

0 �P Q for all Q0 2 NPg. The NP-complete problems are the most di�cult problems
in NP with respect to our polynomial-time reducibility relation. The Travelling Salesman

Problem is an NP-complete problem. It is widely believed, though unproven, that there exist

problems in NP which cannot be solved by polynomial time algorithms. If indeed such a set of

intractable problems exists, the set of NP-complete problems is contained within it.

We prove below that deciding whether an (�;M)-approximation exists is an NP-complete

problem. We further show that the problem of �nding an M -optimal approximation is an NP-

hard problem. NP-hard problems extend the notion of NP-completeness beyond the class of
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decision problems and consist of the problems fQ : Q0 �P Q for all Q0 2 NPg.

2.2 Complexity of Optimal Approximation

Theorem 2.1 Let H be an N -dimensional Hilbert space. Let DN be the set of all dictionaries

for H that contain O(Nk) vectors, where k � 1. Let 0 < �1 < �2 < 1 and M � N such that

�1N � M � �2N . The �nite-input (�, M)-approximation problem, determining for any

given � > 0;D 2 DN , and f 2 H, whether an (�, M)-approximation exists, is NP-complete. The

�nite-input M-optimal approximation problem, �nding the optimal M-approximation, is

NP-hard.

We note that we must alter the approximation problems slightly in order to make use of

the theory of NP-completeness as described. By the �nite-input versions of the problems, we

mean that f , the elements of the dictionaries, and their coe�cients are restricted to binary rep-

resentations of �(Nm) bits, for some m. This restriction does not a�ect the proof, because the

problems that must be solved for the proof are discrete and una�ected by small perturbations.

The theory of NP-completeness over the reals is described in [22].

We emphasize that the theorem does not imply that the M -approximation problem is in-

tractible for speci�c dictionaries D 2 DN . Indeed, we saw above that for orthonormal dictio-

naries, the problem can be solved in polynomial time. Rather, the result is that if we have

an algorithm which �nds the optimal approximation to any given f 2 RN for any dictionary

D 2 DN , the algorithm solves an NP-hard problem.

Proof: For any � we can solve the (�;M)-approximation problem by �rst solving the

M-optimal approximation problem, computing �min = k ~f � fk, and then checking whether

�min < �. Hence the M-optimal approximation problem must be at least as hard as the (�;M)-

approximation problem. Proving that the (�;M)-approximation problem is NP-complete thus

implies that the M -optimal approximation problem is NP-hard.

The (�;M)-approximation problem is in NP, because we can verify in polynomial time that

k ~f � fk < � once we are given the certi�cate consisting of the set of M elements and the

coe�cients used to construct ~f . To prove that the problem is NP-complete we prove that a

known NP-complete problem, the exact cover by 3-sets problem, is polynomial-time reducible

to our approximation problem. In other words, we prove that our approximation problem is at

least as hard as a problem which is known to be NP-complete.

De�nition 2.2 Let X be a set containing N = 3M elements, and let C be a collection of 3-

element subsets of X. The exact cover by 3-sets problem is to decide whether C contains

an exact cover for X, i.e. to determine whether C contains a subcollection C0 such that every

member of X occurs in exactly one member of C0 [13].

Lemma 2.1 We can transform in polynomial time any instance (X; C) of the exact cover by 3-

sets problem of size jX j = 3M into an equivalent instance of the (�;M)-approximation problem

with a dictionary of size O(N3) in an N -dimensional Hilbert space.
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This lemma implies that if we can solve the (�;M)-approximation problem for M = N=3,

we can also solve an NP-complete problem. Therefore the approximation problem must be NP-

complete as well. We thus obtain a proof of the theorem for the case M = N

3
, i.e. �1 = �2 =

1
3
,

and k = 3.

Proof: Let H be an N dimensional space with an orthonormal basis feig1�i�N . For nota-
tional convenience we take the set X to be the set of N = 3M integers between 1 and N . Let

C be a collection of 3-element subsets of X . To each subset S � X we associate a unit vector

in H given by

T (S) =
1pjSj

X
i2S

ei; (2)

where jSj is the cardinality of the set S. Let D be the dictionary for H de�ned by

D = fT (Si) : Si 2 Cg; (3)

where the Si's are the three-element subsets of X contained in C. Since C contains at most 
N

3

!
= O(N3) three-element subsets of X , this transformation can be done in polynomial

time.

We now show that solving the (�;M)-approximation problem for

f = T (X) =
1p
N

NX
i=1

ei (4)

and � <
1p
N

is equivalent to solving the exact cover by 3-sets problem (X; C). Suppose C
contains an exact cover C0 for X . Then

kf �
r

3

N

X
Si2C0

T (Si)k = 0: (5)

Since there areM = 1
3
N such Si's, the approximation problem has a solution. Thus, a solution

to the exact cover problem implies a solution to the approximation problem.

Conversely, suppose the (�;M)-approximation problem has a solution for � < 1p
N
. There

exist M 3-element sets Si 2 C and M coe�cients �n such that

kf �
MX
n=1

�nT (Sn)k <
1p
N
:

The inner product of each basis vector feig1�i�N with
P
M

n=1 �nT (Sn) must be non-zero, for

otherwise we would have kPn

i=1 �iT (Si)� fk � 1p
N

(recall that all components of f are equal

to 1p
N
). Since each T (Si) has non-zero inner products with exactly three basis vectors and

N = 3M , the M sets fSig1�i�M do not intersect and thus de�ne an exact 3-set cover of X .

This proves that a solution to the approximation problem implies a solution to the exact cover

problem, which �nishes the proof of the lemma.
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2

We have proved that the (�;M)-approximation problem is NP-complete for �1 = �2 = 1
3

and dictionaries of size O(N3). We can extend the result to arbitrary 0 < �1 < �2 < 1

and dictionaries of size O(Nk) for k > 1. Let (X; C) be an instance of the exact cover by

3-sets problem where X is a set of n elements. Following lemma 2.1, we can construct an

equivalent (�;M)-approximation problem on a 3n-dimensional space H1. We then embed this

approximation problem in a larger Hilbert space H in order to satisfy the dictionary size and

expansion length constraints. In H2, the orthogonal complement of H1 in H, we construct a
(0; �2N�n)-approximation problem which has a unique solution. The combined approximation

problem in H will be equivalent to the exact cover problem and will have the requisite M and

dictionary size [7].

The optimal approximation criterion of de�nition 2.1 has number of undesirable proper-

ties which are responsible for its NP-completeness. The elements contained in the expansions

are unstable in that functions which are only slightly di�erent can have optimal expansions

containing completely di�erent dictionary elements. The expansions also lack an optimal sub-

structure property, i.e. the expansion in M elements with minimal error does not necessarily

contain an expansion in M � 1 elements with minimal error. The expansions therefore cannot

be progressively re�ned. Finally, depending upon the dictionary, the coe�cients of optimal

approximations can exhibit instability in that the expansion coe�cients �i of the M-optimal

approximation (1) to a vector f can have

MX
i=1

j�ij2 >> jjf jj2:

Consider the case when H = R3, f = (1; 1; 1), and D = fe1; e2; e3; vg, where the ei's are the
Euclidean basis of R3 and v = e1+�f

ke1+�fk . The M -optimal approximation to f for M = 2 is

~f =
ke1 + �fk

�
v � 1

�
e1; (6)

so we see that
P
M

i=1 j�ij2 can be made arbitrarily large. In the next section we describe an

approximation algorithm, based on a greedy re�nement of the vector approximation, which

maintains an energy conservation relation that guarantees stability.

3 Matching Pursuits

A matching pursuit is a greedy algorithm which, rather than solving the optimal approximation

problem, instead progressively re�nes the signal approximation with an iterative procedure

[24]. We describe this algorithm in the next section and present an orthogonalized version in

section 3.2. Section 3.3 describes a fast numerical implementation, and section 3.4 describes an

application to computing adaptive time-frequency decompositions.
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3.1 Non-Orthogonal Matching Pursuits

Let D = fg
g
2� be a dictionary of vectors with unit norm in a Hilbert space H. Let f 2 H.
The �rst step of a matching pursuit is to approximate f by projecting it on a vector g
0 2 D

f =< f; g
0 > g
0 + Rf: (7)

Since the residual Rf is orthogonal to g
0 ,

kfk2 = j< f; g
0 > j2 + kRfk2: (8)

We minimize the norm of the residual by choosing the g
0 2 D that maximizes j< f; g
 > j. In
in�nite dimensions, the supremum of j< f; g
 > j may not be attained, so we relax our selection
criterion. We choose g
0 such that

j< f; g
0 > j � � sup

2�

j< f; g
 > j; (9)

where � 2 (0; 1] is an optimality factor. The vector g
0 is chosen from the set of dictionary

vectors that satisfy (9), with a choice function whose properties vary depending upon the

application. The use of the optimality factor � is discussed further in [17].

The pursuit iterates this procedure by subdecomposing the residual. Let R0
f = f . Suppose

that we have already computed the residual Rkf . We choose g
k 2 D such that

j< R
k
f; g
k > j � � sup


2�
j< R

k
f; g
 > j (10)

and project Rkf on g
k

R
k+1

f = R
k
f� < R

k
f; g
k > g
k : (11)

The orthogonality of Rk+1
f and g
k implies that

kRk+1
fk2 = kRkfk2 � j < R

k
f; g
k > j2: (12)

By summing (11) for k between 0 and n� 1 we obtain

f =
n�1X
k=0

< R
k
f; g
k > g
k + R

n
f: (13)

Similary, summing (12) for k between 0 and n� 1 yields

kfk2 =
n�1X
k=0

j< R
k
f; g
k > j2 + kRnfk2: (14)

The residual Rnf is the approximation error of f after choosing n vectors in the dictionary

and the energy of this error is given by (14). For any f 2 H, the convergence of the error to
zero is shown in [24] to be a consequence of a theorem proved by Jones [15], i.e.

lim
n!1 kR

n
fk = 0: (15)

8



Hence

f =
1X
k=0

< R
k
f; g
k > g
k ; (16)

and

kfk2 =
1X
k=0

j< R
k
f; g
k > j2: (17)

In in�nite dimensions, the convergence rate of this error can be extremely slow. In �nite

dimensions, we now prove that the convergence is exponential. For any vector e 2 H, we de�ne

�(e) = sup

2�

j< e

kek ; g
 > j:

We will take the optimality factor � to be 1 for �nite dimensional spaces unless otherwise

speci�ed. Hence, the chosen vector g
k satis�es

j< R
k
f; g
k > j

kRkfk = �(Rkf):

Equation (12) thus implies that

kRk+1
fk2 = kRkfk2(1� �

2(Rkf)): (18)

Hence norm of the residual decays exponentially with a rate equal to �1
2
log(1 � �

2(Rkf)).

Since D contains at least a basis of H and the unit sphere of H is compact in �nite dimensions,

we can derive [24] that there exists �min > 0 such that for any e 2 H
�(e) � �min: (19)

Equation (18) thus proves that the energy of the residual Rkf decreases exponentially with a

minimum decay rate equal to �1
2
log(1� �

2
min

).

3.2 Orthogonal Matching Pursuits

The approximations derived from a matching pursuit can be re�ned by orthogonalizing the

directions of projection. The resulting orthogonal pursuit converges with a �nite number of

iterations in �nite dimensional spaces, which is not the case for a non-orthogonal pursuit.

Equivalent algorithms have been introduced independently in [6], [18], and [1].

The vector g
k selected at each iteration by the matching pursuit algorithm is not in general

orthogonal to the previously selected vectors fg
pg0�p<k . In subtracting the projection of Rkf

onto g
k the algorithm reintroduces new components in the directions of the fg
pg0�p<k. This
can be avoided by orthogonalizing the fg
pg0�p<k with a Gram-Schmidt procedure. Let u0 =

g
0 . As in a matching pursuit, we choose g
k that satis�es (10). This vector is orthogonalized

with respect to the previously selected vectors by computing

uk = g
k �
k�1X
p=0

< g
k ; up >

jjupjj2
up: (20)

9



The residual is then de�ned by

R
k+1

f = R
k
f � < R

k
f; uk >

jjukjj2
uk: (21)

The vector Rkf is the orthogonal projection of f onto the orthogonal complement to the space

generated by the vectors fg
pg0�p<k. Equation (20) implies that < R
k
f; uk >=< R

k
f; g
k >

and thus

R
k+1

f = R
k
f � < R

k
f; g
k >

jjukjj2
uk : (22)

Since Rk+1
f and uk are orthogonal,

jjRk+1
f jj2 = jjRkf jj2 � j < R

k
f; g
k > j2
jjukjj2

: (23)

If Rkf 6= 0, < R
k
f; g
k >6= 0, and since Rkf is orthogonal to all previously selected vectors

the selected vectors fg
pg0�p<k are linearly independent. Since R0
f = f , from equations (22)

and (23), we derive in a manner similar to that used for (13) and (14), that for any n > 0

f =
n�1X
k=0

< R
k
f; g
k >

jjukjj2
uk +R

n
f; (24)

and

jjf jj2 =
n�1X
k=0

j < R
k
f; g
k > j2
jjukjj2

+ jjRnf jj2: (25)

The theorem below shows that the residuals of an orthogonal pursuit converge strongly to zero

and that the number of iterations required for convergence is less than or equal to the dimension

of the space H. Thus in �nite dimensional spaces, orthogonal matching pursuits are guaranteed
to converge in a �nite number of steps, unlike non-orthogonal pursuits.

Theorem 3.1 Let H be an N -dimensional Hilbert space (N may be in�nite), and let f 2 H .

An orthogonal pursuit converges in less than or equal to N iterations. The residual R
n
f de�ned

in (22) satis�es kRNfk = 0 when N is �nite, or

lim
n!1 kR

n
fk = 0 (26)

when N is in�nite. Hence

f =
N�1X
n=0

< R
n
f; g
n >

kukk2
un (27)

and

kfk2 =
N�1X
n=0

j< R
n
f; g
n > j2
kukk2

: (28)
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Proof: We prove the result for the case N =1; the �nite case is trivial. We have from the

Bessel inequality that
1X
k=0

j< f; uk > j2
kukk2

� kfk2; (29)

so we must have

lim
k!1

j< f; uk > j = lim
k!1

j< R
n
f; g
n > j = 0: (30)

By (9), we must have

lim
k!1

sup

2�

j< R
k
f; g
 > j = 0; (31)

so Rkf converges weakly to 0. To show strong convergence, we compute for n < m the di�erence

kRnf �R
m
fk2 =

mX
k=n+1

j< f; uk > j2
kukk2

�
1X

k=n+1

j< f; uk > j2
kukk2

; (32)

which goes to zero as n goes to in�nity since the sum is bounded. The Cauchy criterion is

satis�ed, so Rnf converges strongly to its weak limit of 0, thus proving the result.

2

The orthogonal pursuit yields a function expansion over an orthogonal family of vectors

fukg0�p<n. To obtain an expansion of f over fg
ng0�k<N we must make a change of basis. The

Gram-Schmidt vector uk can be expanded within fg
pg0�p�k

uk =
kX
p=0

bp;kg
p : (33)

Inserting this expression into (27) yields

f =
MX
n=0

< R
n
f; g
n >

jjunjj2
nX
p=0

bp;ng
p : (34)

In the in�nite dimensional case, without absolute convergence of the above in�nite series, we

cannot rearrange the terms of this double summation to obtain

f =
X

0�p<M
g
p

X
p�n<M

bp;n
< R

n
f; g
n >

jjunjj2
: (35)

The second summation that de�nes the expansion coe�cients over the family fg
pg0�p<M can

indeed diverge. This happens when the family of selected elements is not a Riesz basis of the

closed space it generates. In [7] it is proved that it is indeed possible for the set fg
kg of
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vectors selected by an orthogonal pursuit to be degenerate, even when the dictionary contains

an orthonormal basis.

The residuals of orthogonal matching pursuits in general decrease faster than the non-

orthogonal matching pursuits. However, this orthogonal procedure can yield unstable expan-

sions by selecting ill-conditioned family of vectors. Orthogonal pursuits also require many more

operations to compute than non-orthogonal pursuits because of the Gram-Schmidt orthogonal-

ization procedure. In the next section we compare the complexity of these two algorithms.

3.3 Implementation of Matching Pursuits

We consider the case for which H is a �nite dimensional space and D is a dictionary with a

�nite number of vectors. The optimality factor � is set to 1.

The matching pursuit is initialized by computing the inner products f< f; g
 >g
2�. These
inner products are stored in an open hash table [4], where they are partially sorted. The

algorithm is de�ned by induction as follows. Suppose that we have already computed f<
R
n
f; g
 >g
2�, for n � 0. We must �rst �nd g
n such that

j< R
n
f; g
n > j = sup


2�
j< R

n
f; g
 > j: (36)

Since all inner products are stored in an open hash table, this requires O(1) operations on

average. Once g
n is selected, we compute the inner product of the new residual Rn+1
f with

all g
 2 D using an updating formula derived from equation (11)

< R
n+1

f; g
 >=< R
n
f; g
 > � < R

n
f; g
n > < g
n ; g
 > : (37)

Since we have already computed < R
n
f; g
 > and < R

n
f; g
n >, this update requires only that

we compute < g
n ; g
 >. Dictionaries are generally built so that few such inner products are

non-zero, and non-zero inner products are either precomputed and stored or computed with a

small number of operations. Suppose that the inner product of any two dictionary elements can

be obtained with O(I) operations and that there are O(Z) non-zero inner products. Computing

the products f< R
n+1

f; g
 >g
2� and storing them in the hash table thus requires O(IZ)

operations. The total complexity of P matching pursuit iterations is thus O(PIZ).

The initialization and selection portions of the orthogonal matching pursuit algorithm are

implemented in the same way as they are for the non-orthogonal algorithm. The di�erence

between the two algorithms is in the updating of the inner products < R
n
f; g
 > after a vector

has been selected. Once the vector g
n is selected, we must compute the expansion coe�cients

of the orthogonal vector un

un =
nX
p=0

bp;ng
p (38)

with the Gram-Schmidt formula (20). For p < n, we suppose that we already computed

the expansion coe�cients up over the family fg
kg0�k�p. If the inner products of any two

elements in D is calculated in O(I) operations the expansion coe�cient fbp;ng0�p�n are obtained

12



in O(nI + n
2) operations. We use the Gram-Schmidt formula for computational simplicity,

although it has poor numerical properties,

We compute the inner product of the new residual Rn+1
f with all g
 2 D using the orthog-

onal updating formula (22)

< R
n+1

f; g
 >=< R
n
f; g
 > �< R

n
f; g
n > < un; g
 >

kunk2
: (39)

Since

< un; g
 >=
nX
p=0

bp;n < g
p ; g
 >; (40)

computing f< R
n+1

f; g
 >g
2� requires O(nIZ) operations. The total number of operations to
compute P orthogonal matching pursuit iterations is therefore O(P 3+P 2

IZ). For P iterations,

the non-orthogonal pursuit algorithm is P times faster than the orthogonal one. When P is

large, which is the case in many signal processing applications, the orthogonal pursuits give

much better approximations, but the amount of computation required is prohibitive. For small

P , non-orthogonal and orthogonal pursuits give roughly equivalent approximations. We make

a detailed comparison of the performance of these algorithms in section 7.

3.4 Application to Dictionaries of Time-Frequency Atoms

Signals such as sound recordings contain structures that are well localized both in time and

frequency. This localization varies according to the sound source, which makes it di�cult to �nd

a basis that is a priori well adapted to all components of a particular sound signal. Dictionaries

of time-frequency atoms include waveforms with a wide range of time-frequency localizations

and are thus much larger than a single basis. Such dictionaries are generated by translating,

modulating, and scaling a single real window function g(t) 2 L
2(R). We suppose that that g(t)

is even, kgk = 1,
R
g(t)dt 6= 0, and g(0) 6= 0. We denote 
 = (s; u; �) and

g
(t) =
1p
s
g(
t� u

s
)ei�t: (41)

The time-frequency atom g
(t) is centered at t = u with a support proportional to s. Its Fourier

transform is

ĝ
(!) =
p
sĝ(s(! � �))e�i(!��)u; (42)

and ĝ
(!) is centered at ! = � and concentrated over a domain proportional to 1
s
. For small

values of s the atoms are well localized in time but poorly localized in frequency; for large

values of s the atoms are well localized in space but poorly localized in time.

The dictionary of time-frequency atoms D = fg
(t)g
2� is a very redundant set of functions
that includes both window Fourier frames and wavelet frames [5]. When the window function

g is the Gaussian g(t) = 21=4e��t
2
, the resulting time-frequency atoms are Gabor functions,

13



and have optimal localization in time and in frequency. A matching pursuit decomposes any

f 2 L2(R) into the sum

f =
+1X
n=0

< R
n
f; g
n > g
n ; (43)

where the scales, position and frequency 
n = (sn; un; �n) of each atom

g
n(t) =
1p
s
n

g(
t� un

sn
)ei�nt (44)

are chosen to best match the structures of f . This procedure e�ciently approximates any signal

structure that is well-localized in the time-frequency plane, regardless of whether its localization

is in time or in frequency.

To any matching pursuit expansion[17][19], we can associate a time-frequency energy dis-

tribution de�ned by

Ef(t; !) =
1X
n=0

j< R
n
f; g
n > j2Wg
n(t; !); (45)

where

Wg
n(t; !) = 2 exp

"
�2�

 
(t� u)2

s2
+ s

2(! � �)2
!#

;

is the Wigner distribution [3] of the Gabor atom g
n . Its energy is concentrated in the time

and frequency domains where g
n is localized. Figure 3.4 shows Ef(t; !) for the signal f of

512 samples displayed in Fig. 3.4. This signal is built by adding waveforms of di�erent time-

frequency localizations. It is the sum of cos((1�cos(ax))bx), two truncated sinusoids, two Dirac
functions, and cos(cx).

The signal is decomposed into a dictionary consisting of a discretized version of the Gabor

dictionary described above. The translation and modulation parameters are given in units

proportional to the sample spacing, and the scaling is restricted to powers of 2. The size of this

discretized dictionary is N log2(N) for an N-sample dictionary.

Each Gabor time-frequency atom selected by the matching pursuit corresponds to a dark

elongated Gaussian blob in the time-frequency plane. The arch of the the cos((1� cos(ax))bx)

is decomposed into a sum of atoms that covers its time-frequency support. The truncated

sinusoids are in the center and upper left-hand corner of the plane. The middle horizontal

dark line is an atom well localized frequency that corresponds to the component cos(cx) of the

signal. The two vertical dark lines are atoms very well localized in time that correspond to the

two Diracs.

Software implementing matching pursuits for time-frequency dictionaries is available through

anonymous ftp at the address cs.nyu.edu . Instructions are in the �le README of the directory

/pub/wave/software.
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Figure 1: Synthetic signal of 512 samples built by adding cos((1� cos(ax))bx), two truncated

sinusoids, two Dirac functions, and cos(cx).

Figure 2: Time frequency energy distribution Ef(t; !) of the signal in the �gure above. The

horizontal axis is time and the vertical axis is frequency. The darkness of the image increases

with Ef(t; !).
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4 Group Invariant Dictionaries

The translation, dilation, and frequency modulation of any vector from the Gabor dictionary

is also contained in the Gabor dictionary. This invariance under the action of any of the

operators that belong to the group of translations, dilations or frequency modulations implies

important invariance properties of matching pursuits with the Gabor dictionary. In this section

we examine the properties of pursuits when the dictionary is left invariant by a given group

of unitary linear operators G = fG�g�2
 that is a representation of the group 
. Since each

operator G� is unitary, its inverse and adjoint is G��1 , where �
�1 is the inverse of � in 
. For

example, the unitary groups of translation, frequency modulation and dilation over H = L2(R)

are de�ned respectively by G�f(t) = f(t � �), G�f(t) = e
i�t
f(t) and G�f(t) =

1p
s�
f( t

s�
).

De�nition 4.1 A dictionary D = fg
g
2� is invariant with respect to the group of unitary

operators G = fG�g�2
 if and only if for every g
 2 D and � 2 
 we have ei�G�g
 2 D for a

unique � 2 [0; 2�).

The Gabor dictionary is invariant under the group generated by translations, modulations

and dilations. The properties of the corresponding matching pursuit depends upon the choice

function C that chooses for any f 2 H an element g
0 = C(E[f ]) from the set

E[f ] = fg 2 D : j < f; g > j � � sup
g
2D

j < f; g
 > jg

onto which f is then projected. The following proposition imposes a commutatitivity condition

on the choice function C so that the matching pursuit commutes with the group operators.

Proposition 4.1 Let D be invariant with respect to the group of unitary operators G = fG�g�2
.
Let f 2 H and

f =
n�1X
k=0

ang
n + R
n
f

be its matching pursuit computed with the choice function C. If for any n 2 N we have

CG�E[R
n
f ] = e

i�
G�CE[R

n
f ]; (46)

then the matching pursuit decomposition of G�f is

G�f =
n�1X
k=0

ane
i�nG�g
n +G�R

n
f; (47)

where the phases �n are determined so that e
i�nG�g
n 2 D.

The condition (46) means that the element chosen from the E[Rnf ] transformed by G� is

the transformation by G� of the element chosen from E[Rnf ] up to a complex phase. Equation

(47) implies that the vectors selected by the matching pursuit for G�f are, up to a complex
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phase, the vectors selected for the matching pursuit of f transformed by G� , and the residuals

of G�f are equal to the residuals of f transformed by G� .

Proof: Since the group is unitary, for any g
 2 D

< G�f; g
 >=< f;G��1g
 > :

Hence g
 2 E[G�f ] if and only if ei�G��1g
 2 E[f ] for some �, which proves that E[G�f ] =

G�E[f ] up to a complex phase. By using the commutativity (46) of the choice function with

respect to G� we then easily prove (47) by induction.

2

We must now prove that choice functions exist that satisfy the commutativity relation (46)

for all f 2 H or at least for almost all f 2 H. The following proposition gives a necessary

condition for constructing such choice functions.

Proposition 4.2 Let K be set of functions f 2 H such that there exists a G� 6= I for which

E[f ] = E[G�f ] (48)

up to a complex phase. There exists a choice function C such that for any f 2 H �K and

G� 2 G
CG�E[f ] = e

i�
G�CE[f ]: (49)

Proof: We construct this choice function from the equivalence classes of an equivalence

relation on the sets E[f ] for f 2 H �K. We de�ne R on H �K such that E[f ] R E[h] if and

only if there exists a G� 2 G such that v 2 E[h] if and only if ei�G�v 2 E[f ] for some �. Note

that because we have excluded the set K from the domain of R this G� is unique.

For all f 2 H�K the set E[f ] belongs to exactly one R equivalence class. By the axiom of

choice, we can select a representative set E[h] from each equivalence class. Let S be the set of

these representatives. Again, by the axiom of choice, we can de�ne a choice function C on S

by selecting from each set E[h] 2 S a single element C(E[h]).

We now extend C to all H � K. For any f 2 H � K, E[f ] is contained in some R

equivalence class. Hence there exists an h 2 S and a unique G� such that v 2 E[h] if and only

if ei�G�v 2 E[f ]. We set C(E[f ]) = e
i�
G�C(E[h]) where � is determined so that C(E[f ]) 2 D.

From proposition 4.1, E[f ] and E[G�f ] belong to the same R equivalence class for all

f 2 H � K, and E[G�f ] = G�E[f ] up to a complex phase. Hence there exists an h 2 S

and a unique G� and G� such that up to a complex phase E[f ] = E[G�h] = G�E[h] and

E[G�f ] = E[G�h] = G�E[h]. This implies that E[h] = E[G��1G�G�h], and because h is not

in K, we must have G� = G�G�. By our construction of C we have C(E[f ]) = e
i!
G�C(E[h])

and C(E[G�f ]) = e
i 
G�C(E[h]) = e

i 
G�G�C(E[h]) = e

i( �!)
G�C(E[f ]). Thus, the choice

function we have constructed satis�es the commutativity condition (46)

2
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Proposition 4.3 Let H be an in�nite dimensional space. If for any g
 2 D and G� 6= I there

exists A such that for any h 2 H
jjhjj2 � A

X
n2N

j < h;G�ng
 > j2; (50)

then K = f0g.

Proof: If there exists f 2 H and G� such that E[f ] = E[G�f ], then for any n 2 N,

E[f ] = E[G�nf ], where G�nf is the nth power of G� . Hence, for any g
 2 E[f ] and n 2N
j < f;G�ng
 > j � ��(f):

If we set h = f in (50), this property implies that �(f) = 0, for otherwise f would have an

in�nite norm. Since linear combinations of elements in D are dense in H, if �(f) = 0 then

f = 0.

2

Property (50) is satis�ed for the Gabor dictionary and the group G composed of dilations,

translations, and modulations for H = L2(R). This comes from our ability to construct frames

of L2(R) through translations and dilations or frequency modulations of Gaussian functions

[5]. Proposition 4.2 implies that there exists a choice function such that matching pursuits with

a Gabor dictionary commute with dilations, translations, and frequency modulations.

For dictionaries corresponding to a �nite cyclic group, such as the group of unit translations

modulo N , we can obtain group invariant decompositions for all functions in a complex space

H if and only if the dictionary contains all eigenvectors of the group operators G� [7]. This

result cannot be extended to groups generated by two non-commuting elements, such as the

set of all unit translations and modulations, because non-commuting operators have di�erent

eigenvectors.

For general groups, when H has a �nite dimension and D is a �nite dictionary, we set the

optimality factor � = 1. Then f 2 K if and only if there exists g
 2 D and G� such that

�(f) = j < f; g
 > j = j < f;G�g
 > j:
This set K is of measure 0 in H. If Rnf is not in K for all n 2N, the proof of proposition 4.1

shows that the commutativity relation (47) remains valid for f . If the set of functions f for

which R
n
f 2 K for some n is of measure 0 in H we say that the matching pursuit commutes

with operators in G almost everywhere in H.

5 Chaos in Matching Pursuits

Each iteration of a matching pursuit is a solution of anM -optimal approximation problem where

M = 1. Hence the pursuit exhibits some of the same instabilities in its choice of dictionary

vectors as solutions to the M -optimal approximation problem. In this section we study these

instabilities and prove that for a particular dictionary the pursuit is chaotic.
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5.1 Renormalized Matching Pursuits

We renormalize the residuals Rnf to prevent the convergence of residuals to zero so we can

study their asymptotic properties. Let Rnf be the residual after step n of a matching pursuit.

The renormalized residual ~Rnf is

~Rnf =
R
n
f

kRnfk : (51)

The renormalized matching pursuit map is de�ned by

M( ~Rnf) = ~Rn+1
f: (52)

Since Rn+1
f = R

n
f� < R

n
f; g
n > g
n and

kRn+1
fk2 = kRnfk2 � j < R

n
f; g
n > j2;

we derive that if j < ~Rnf; g
n > j 6= 1

M( ~Rnf ) = ~Rn+1
f =

~Rnf� < ~Rnf; g
n > g
nq
1� j < ~Rnf; g
n > j2

: (53)

We set M( ~Rnf) = 0 if j < ~Rnf; g
n > j = 1.

At each iteration the renormalized matching pursuit map removes the largest dictionary

component of the residual and renormalizes the new residual. This action is much like that

of a binary shift operator acting on a binary decimal: the shift operator removes the most

signi�cant digit of the expansion and then multiplies the decimal by 2, which is analogous to a

renormalization.

De�nition 5.1 Let s 2 [0; 1] be expanded in binary form 0:s1s2s3 : : :, where si 2 f0; 1g. The

binary left-shift map L : [0; 1]! [0; 1] is de�ned by

L(0:s1s2s3 : : :) = 0:s2s3s4 : : : : (54)

The binary shift map is well-known to be chaotic with respect to the Lebesgue measure on

[0; 1]. We recall the three conditions that characterize a chaotic map T : �! � [8] [2].

1. T must have a sensitive dependence on initial conditions. Let T (k) = T � T � : : : � T , k
times. There exists an � > 0 such that in every neighborhood of x 2 � we can �nd a

point y such that jT (k)(x)� T
(k)(y)j > � for some k � 0.

2. Successive iterations of T must mix the domain. T is said to be topologically transitive if

for every pair of open sets U; V � �, there is a k > 0 for which T
(k)(U)\ V 6= ;.

3. The periodic points of T must be dense in �.
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The topological properties of the renormalized matching pursuit map are similar to those

of the left shift map which suggests the possibility of chaotic behavior. The renormalized

matching pursuit map has \sensitive dependence" on the initial signal f when f is near a

dictionary element or at the midpoint of a line joining two di�erent dictionary elements. Let

f 2 H and g
1 and g
2 be two dictionary elements such that

j < f; g
1 > j = j < f; g
2 > j > j < f; g
 > j for 
1; 
2 6= 
 2 �:

We can change the residual Rf completely by moving f an arbitrarily small distance towards

either g
1 or g
2 . The map thus separates points in particular regions of the space. Alternatively,

consider two signals f1 and f2 de�ned by

f1 = (1� �)g
0 + �h1 (55)

and

f2 = (1� �)g
0 + �h2 (56)

where g
0 is the closest dictionary element to f1 and f2, jjh1 � h2jj = 1, and < h1; g
0 >=<

h2; g
0 >= 0. Then jjf1 � f2jj = �jjh1 � h2jj can be made arbitrarily small, while jj ~Rf1 � ~Rf2jj =
jjh1� h2jj = 1. The open ball around g
0 is mapped to the entire orthogonal complement of g
0
in the function space, which shows that in some regions of the space, the renormalized matching

pursuit map also shares the domain-mixing properties of chaotic maps.

5.2 Chaotic Three-Dimensional Matching Pursuit

Proving that a non-linear map is topologically transitive can be extremely di�cult. We therefore

consider �rst a simple dictionary forH = R3, for which we prove that the renormalized matching

pursuit is topologically equivalent to a shift map. The dictionary D consists of three unit vectors

g0; g1; and g2 in R3 oriented such that < gi; gj >=
1
2
for i 6= j. The vectors form the edges of

a regular tetrahedron emerging from a common vertex; each vector is separated by a 60 degree

angle from the other two.

To prove the topological equivalence, we �rst use symmetries to reduce the normalized

matching pursuit to a one-dimensional map. The residual Rnf is formed by projecting Rn�1f
onto the plane perpendicular to the selected g
n�1 . Hence, the residuals R

n
f are all contained

in one of the three planes Pi orthogonal to the vectors gi. We can expand the residual Rnf 2 Pi

over the orthonormal basis (ei;1; ei;2) of Pi given by

ei;1 = gi+1 � gi�1 (57)

ei;2 =
gi+1 + gi�1 � gip

2
: (58)

All subscripts above and for the remainder of this section will be taken modulo 3.

Let (xn; yn) be the coordinates of Rnf with respect to the basis (ei;1; ei;2). Since R
n
f is

orthogonal to gi, the next dictionary vector that is selected will be either gi�1 or gi+1. One can
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Figure 3: F (�) on [��; �). The discontinuities occur between quadrants and correspond to the

points at which the dictionary element selected by the pursuit changes. The �rst and third

pieces are mapped to Pi+1 and the second and fourth are mapped to Pi�1. The line y = � is

plotted for reference.

verify that the residual Rnf is mapped to a point in Pi�1 if xnyn < 0 and to a point in Pi+1 if

xnyn > 0. The coordinates of the residual Rn+1
f in either of these planes are

Fxy

 
xn

yn

!
=

8>>>><
>>>>:

"
�1

2

p
2
2

�
p
2
2 0

# 
xn

yn

!
xn > 0; yn � 0

or xn < 0; yn � 0"
�1

2
�
p
2
2p

2
2 0

# 
xn

yn

!
xn � 0; yn < 0

or xn � 0; yn > 0

(59)

The normalized residual ~Rnf has a unit norm and hence lies on a unit circle in one of the

planes Pi. We can thus parameterize this residual by an angle � 2 [��; �) where the angle 0
corresponds to the orthogonal basis vector ei;1. The angle of the next renormalized residual
~Rn+1

f in Pi+1 or Pi�1 is F (�) = Arg(Fxy(cos �; sin �)). The graph of F (�) is shown in Figure

5.2. To simplify the analysis, we identify the three unit circles on the planes Pi to a single circle

so that the map F (�) becomes a map from the unit circle onto itself. The index of the plane in

which a residual vector Rnf lies can be obtained from the index of the plane Pi in which Rf

lies and the sequence of the angles in the planes of the residuals Rf;R2
f; R

3
f; : : :, so the map

encodes the plane Pi containing R
n
f .

F is piecewise strictly monotonically increasing with discontinuities at integer multiples of
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Figure 4: The plane Pi. The projections of gi+1 and gi�1 are shown as the dotted vectors in

the �rst and second quadrants. The shaded and white areas are mapped to Pi+1 and Pi�1,
respectively, by the next iteration of the pursuit.

�

2
. Moreover, F possesses the following symmetries which we make use of below.

F (�) =

8>>><
>>>:

� + F (� + �) �� � � < ��

2

�F (��) ��

2
� � < 0

F (�) 0 � � <
�

2

� � F (� � �) �

2
� � < �

(60)

To analyze the chaotic behavior of this map, we examine F (2), the graph of which is shown in

Figure 5. The map F (2) partitions [��; �) into four invariant sets I+ = [p1; p2), I� = [�p2;�p1),
J+ = [0; p1)[ [p2; �), and J� = [��;�p2)[ [�p1; 0). Here �p1 and �p2 are the four �xed points

of the map given by p1 = tan�1(
p
2) and p2 = � � tan�1(

p
2).

Proposition 5.1 The restriction of F (2) to each of the invariant regions I� and J� is topolog-

ically conjugate to the binary shift map L. The restrictions are therefore chaotic. F is chaotic

on the inverse images of I� and J�.

Proof: To prove that F (2) is topologically conjugate to L, we must construct an homeomor-

phism h such that

h � F (2) = L � h: (61)

This homeomorphism guarantees that F (2) shares the shift map's topological transitivity, sen-

sitive dependence on initial conditions, and dense periodic points.
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Figure 5: F (2)(�) on [��; �). The discontinuities correspond to the di�erent selected elements

in two iterations of the pursuit. From left to right in [��; 0), the pieces correspond to selecting

(1) gi+1 followed by gi+2, (2) gi+1 followed by gi, (3) gi�1 followed by gi, (4) gi�1 followed by

gi�2. The cycle is repeated in [0; �). The �xed points correspond to the projections of �gi�1
onto Pi.
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We �rst focus on the region I+. Due to symmetry, the construction is identical for I�, so we
drop the subscript of I below. The map F (2) is di�erentiable over I0 = [p1;

�

2
) and I1 = [�

2
; p2).

For x in I , we de�ne the index of x by

i(x) =

(
0; x 2 I0

1; x 2 I1
(62)

The itinerary of a point x 2 I is the sequence of indices of the images of x under successive

applications of F (2). Following a standard technique [8], we construct a homeomorphism hI that

satis�es (61) by assigning to each point x 2 I a binary decimal in [0; 1] with digits corresponding

to the itinerary of x

hI(x) = 0 : i(x) i(F (2)(x)) i(F (4)(x)) i(F (6)(x)) : : : (63)

The itinerary of F (2)(x) is just the itinerary of x shifted left, so we have

hI � F (2)(x) = 0 : i(F (2)(x)) i(F (4)(x)) i(F (6)(x)) : : :

= L � hI (x): (64)

Thus, (61) is satis�ed. The details of the proof that hI(x) is a homeomorphism are similar

to those in [8], x1.7, with one technical di�erence. The method of proving that the map hI

is one-to-one from [8] requires that (F (2))0 be bounded above one. This is not the case here.

However, we can show that for � 2 [��; �) (F (4))0(�) � 11
6
> 1: The injectivity of hI is then

obtained with minor modi�cations of the proof in [8].

The proof that F (2) : J� ! J� is a chaotic map is similar to the proof for F (2) : I� ! I�.
We consider J+. We �rst modify the metric over our domain so that the points p1 and p2 have

a zero distance as well as the points 0 and �. This metric over our domain is equivalent to a

uniform metric over a circle. With this modi�cation, we obtain a map which is di�erentiable

over [0; p1) and [p2; �) and which maps each of these intervals to the entire domain. The proof

now proceeds exactly as above. We note that in the proof that F (2) is chaotic on J we de�ne

the index function i(x) so that

i(x) =

(
0; x 2 F (I0)

1; x 2 F (I1)
(65)

With this construction we obtain a conjugacy between F and the shift map with a homeomor-

phism hJ (x) = hI(F (x)).

2

The similarities between F
(2) and L become much clearer when we compare the graph of

F
(2) on I in Figure 6 with the graph of the binary shift L on [0; 1), given by y = 2x mod 1. Both

maps are piecewise di�erentiable and monotonically increasing, and both map each continuous

piece onto the entire domain. The slope of the graph of L is strictly greater than 1, and although

the slope of the pieces of F (2) is not everywhere greater than 1, the slope of the pieces of F (4)

is. The itinerary for a point in [0; 1) under L is just its binary decimal expansion, so we see

that the homeomorphism we have constructed is a natural one.
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Figure 6: F (2)(�) on I .

6 Invariant Measure

The chaotic properties of matching pursuits make it impossible to predict the exact evolution

of the residuals, but we can can obtain a statistical description of their properties. For an

ergodic map, asymptotic statistics can be obtained from the invariant measure. The residuals

R
n
f for n large can be interpreted as realizations of an equilibrium process whose distribution

is characterized by the invariant measure of the map. The next section describes the basic

properties of these invariant measures and analyzes the particular case of the three-dimensional

dictionary.

In higher dimensional spaces, numerical experiments show that the norm of the residuals

kRnfk decreases quickly for the �rst few iterations of a pursuit, but afterwards the decay rate

slows down and remains approximately constant. The average decay rate can be computed

from the invariant measure, and the measurement of this decay rate has applications in the

approximation of signals using a small number of \coherent structures".

Families such as the Gabor dictionary that are invariant under the action of group operators

yield invariant measures with invariant properties that are studied in section 6.3. To re�ne our

understanding of the invariant measures, we construct an approximate stochastic model of the

equilibrium process and provide numerical veri�cations for a dictionary composed of discrete

Dirac and Fourier bases.
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6.1 Ergodicity

We �rst summarize some results of ergodic theory [14] [20]. Let � be a measure and let � be

a measurable set with �(�) > 0. Let T be a map from � onto �. T is said to be measure-

preserving if for any measurable set S � � we have

�(S) = �(T�1(S)); (66)

where T�1(S) is the inverse image of S under T . The measure � is said to be an invariant

measure under T . A set E is said to be an invariant set under T if T�1E = E. The measure

preserving map T is ergodic with respect to a measure � if for all invariant sets E � � we have

either �(E) = 0 or �(��E) = 0.

Ergodicity is a measure-theoretical notion that is related to the topological transitivity

property of chaos [23]. It implies that the map T moves around the points in its domain. For

example, if T is ergodic with respect to a non-atomic measure �, then only for x in a set of

�-measure 0 do the iterates Tx; T 2
x; T

3
x; : : : converge to a cycle of �nite length. Hence, for

almost all x 2 �, Tnx neither tends to a �xed point nor a limit cycle. For most of � the

asymptotic behavior of Tnx is complicated.

The binary left shift map on [0,1] is ergodic with respect the Lebesgue measure � [16]. We can

use the topological conjugacy relation (61) we derived in section 5 to prove that the renormalized

matching pursuit map F
(2) is also ergodic with respect to the measure �(S) = �(h(S)), where

h is the conjugacy relation from (61), restricted to one of invariant sets I�; J�. If the set S is

invariant with respect to F (2), i.e. F (2)(S) = S, then from (61), the set h(S) must be invariant

under L. Because L is ergodic, either �(h(S)) or �([0; 1] � h(S)) must be zero. From our

de�nition of �, we have either �(S) = 0 or �(��S) = 0, proving the result. Using the Birkho�

ergodic theorem, we can use this result to prove that the renormalized matching pursuit map

F is ergodic when restricted to one of its two invariant sets.

The ergodicity of a map T allows us to numerically estimate the invariant measure by

counting for points x 2 � how often the iterates Tx; T 2
x; T

3
x; : : : lie in a particular subset S

of �. The Birkho� ergodic theorem [14] states that when �(�) <1,

�(S) = �(�) lim
n!1

1

n

nX
k=1

�S(T
k
x) (67)

except possibly for x in a set of �-measure 0.

When an invariant measure � is absolutely continuous with respect to the Lebesgue measure,

by the Radon-Nikodym theorem there exists a function p such that

�(S) =

Z
S

p(x)dx (68)

The function p is called an invariant density. For the invariant measure of F , this density is

given by

p(x) = jh0(x)j
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Figure 7: The invariant densities of F for the two invariant sets I� [ J� superimposed on the

interval [��; �). The densities have been obtained by computing the Cesaro sums.

provided that h(x) is absolutely continuous. This invariant density measure can be computed

numerically by estimating the limit (67) when the density exists. Fig. 7 is the result of

numerically computing the Cesaro sums (67) for a large set of random values of x with sets

S of the form [a; a+ �). In this case, the support of the invariant measure of the normalized

matching pursuit is the three unit circles of the planes Pi. On each of these circles, the invariant

density measures are the same and equal to p(�).

6.2 Coherent Structures

The Birkho� ergodic theorem implies that an ergodic invariant measure re
ects the distributions

of successive iterates of the map T . The average number of times the map takes its value in

a set is proportional to the invariant measure of this set. The invariant measure provides a

statistical description of the behavior of the residuals after a large number of iterations, although

the residuals may initially display transient behavior. For example, for the three-dimensional

dictionary of section 5, there is one chance in three that the residual is on the unit circle of any

particular plane Pi, and over this plane the probability that it is located between the angles �1
and �2 is

�([�1;�2])

�[0;2�]
.

In higher dimensional spaces the invariant measure � can be viewed as the distribution

of a stochastic process over the unit sphere S of the space H. After a su�cient number

of iterations, the renormalized residuals of the map can be considered to be realizations of

this process. We call \dictionary noise" the process P corresponding to the invariant ergodic
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measure of the renormalized matching pursuit (if it exists). If the dictionary is invariant under

translations and frequency modulations, we prove in the next section that the dictionary noise

is a stationary white noise. Realizations of a dictionary noise have inner products that are as

small and as uniformly spread across the dictionary vectors as possible. Indeed, the measure is

invariant under the action of the normalized matching pursuit which sets to zero the largest inner

product and makes the appropriate renormalization with (76). Since the statistical properties

of a realization x of P are not modi�ed by setting to zero the largest inner product, the value

�(x) of this largest inner product cannot be much larger the next larger ones. The average

value of this maximum inner product for realizations of this process is by de�nition

�1 =

Z
S
�(x)d�(x) = E[�(P )]:

The ergodicity of the invariant measure implies that

�1 = lim
n!1

1

n

nX
k=1

�(Rk
f) (69)

for almost all f . We recall from (18) that if the optimality factor � = 1 we have

kRn+1
fk = kRnfk

q
1� �2(Rnf): (70)

The average decay rate is thus

d1 = lim
n!1

log kfk � log kRn�1fk
n

= lim
n!1

1

n

n�1X
k=0

�1
2

log (1� �
2(Rkf)): (71)

The ergodicity of the renormalized map implies that this average decay rate is

d1 = �1

2

Z
S
log (1� �

2(x))d�(x) = �1

2
E[log (1� �

2(P ))]: (72)

Since �(x) � �min,

d1 � �1

2
log(1� �

2
min);

but numerical experiments show that there is often not a large factor between these two values.

The decay rate of the norms of the residuals Rnf was studied numerically in [24]. The nu-

merical experiments show that when the original vector f is well-correlated with a few dictionary

vectors, the �rst iterations of the matching pursuit remove these highly correlated components,

called coherent structures. Afterwards, the average decay rate decreases quickly to d1.
The chaotic behavior of the matching pursuit map that we have demonstrated provides

a theoretical explanation for this behavior of the decay rate. As the coherent structures are

removed, the energy of the residuals becomes spread out over many dictionary vectors, as it is

for realizations of the dictionary noise P , and the decay rate of the residuals becomes small and
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on average equal to d1. The convergence of the average decay rate to d1 can be interpreted

as the the residuals of an ergodic map converging to the support of the invariant measure.

We emphasize that our notion of coherence here is entirely dependent upon the dictionary

in question. A residual which is considered dictionary noise with respect to one dictionary may

contain many coherent structures with respect to another dictionary. For example, a sinusoidal

wave has no coherent components in a dictionary composed of Diracs but is clearly very coherent

in a dictionary of complex exponentials.

For many signal processing applications, the dictionary de�nes a set of structures which

we wish to isolate. We truncate signal expansions after most of the coherent structures have

been removed because the dictionary noise which remains does not resemble the features we

are looking for, and because the convergence of the approximations is slow for the dictionary

noise. Expansions into coherent structures allow us to compress much of the signal energy into

a few elements.

As long as a signal f contains coherent structures, the sequence �(Rnf) has di�erent prop-

erties than realizations of the random variable �(P ), where P is the dictionary noise process. A

simple procedure to decide when the coherent structures have mostly disappeared by iteration

n is to test whether a running average of the �(Rkf)'s satisfy

1

d

n+dX
k=n

�(Rkf) � �1(1 + �); (73)

where d and � are smoothing and con�dence parameters, respectively, which are adjusted ac-

cording to the variance of �(P ).

Numerical experiments suggest that the normalized matching pursuit with a Gabor dictio-

nary does have an ergodic invariant measure. After a number of iterations, the residuals behave

like realizations of a stationary white noise. The next section shows why this occurs. In our

discrete implementation of this dictionary, where the scale is discretized in powers of 2 and

H = RN where N = 8192, we measured numerically that �1 � 0:043. Fig. 9 displays �(Rnf)

as a function of the number of iterations n for a noisy recording of the word \wavelets" shown

in Fig. 8. We see that the Cesaro sums of �(Rnf) converge to �1. The time-frequency energy

distribution Ef(t; !) of the �rst n = 200 coherent structures is shown in Fig. 12. Fig. 11 is

the signal reconstructed from these coherent structures, and Fig. 13 shows the approximation

error Rnf . The signal recovered from the coherent structures has a very good sound quality

despite the fact that it was approximated by far fewer elements than the number of samples.

When we use the Gabor dictionary, the coherent structures of a signal are those portions

of a signal that are well-localized in the time-frequency plane. Gaussian white noise is not

e�ciently represented in this dictionary because it is stationary and white, and its energy is

spread uniformly over the entire dictionary, much like the realizations of the dicionary noise.

Speech contains many structures that are well-localized in the time-frequency plane, especially

voiced segments of speech, so these signals are e�ciently represented by the Gabor dictionary.

As a result, the coherent portion of a noisy speech signal is a much better approximation to

the speech than to the noise. The coherent reconstruction of the \wavelet" signal has a 14.9
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Figure 8: Digitized recording of a female speaker pronouncing the word \wavelets" to which

white noise has been added. Sampling is at 11 KHz, and the signal to noise ratio is 10dB.
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Figure 9: �(Rnf) and the Cesaro sum 1
n

P
n

k=1 �(R
k
f) as a function of n for the \wavelets"

signal with a dictionary of discrete Gabor functions. The top curve is the Cesaro sum, the

middle curve is �(Rnf), and the dashed line is �1.
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Figure 10: The time-frequency energy distribution of the speech recording shown in Fig. 8.

The initial cluster which contains the low-frequency \w" and the harmonics of the long \a".

The second cluster is the \le". The �nal portion of the signal is the \s", which resembles a

band-limited noise. The scattered horizontal and vertical bars are components of the noise.
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Figure 11: The \wavelets" signal reconstructed from the 200 coherent structures. The number

of coherent structures was determined by setting d = 5 and � = 0:02:

Figure 12: The time-frequency energy distribution of the 200 coherent structures of the speech

recording shown in Fig. 8. Note that the phonetic features described in Fig. 8 are all clearly

visible in the coherent portion of the signal.
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Figure 13: The residual R200
f of the \wavelets" signal shown in Fig. 8.

dB signal to noise ratio whereas the original signal had only a 10.0 dB SNR. Moreover, the

coherent reconstruction is audibly less noisy than the original signal.

A denoising procedure proposed in [24] is based upon the fact that white noise is poorly

represented in the Gabor dictionary, and was inspired by numerical experiments with the decay

of the residuals. Similar ideas have been described by [21] [11]. Namely, to separate \noise"

from a signal, we approximate the noisy signal using a scheme which e�ciently approximates

the portion of interest but ine�ciently approximates the noise. In order to implement a de-

noising scheme with a matching pursuit, it is essential that the dictionary be well-adapted to

decomposing the portion of signals we wish to retain and poorly-adapted to decomposing that

portion we wish to discard. In [7] an algorithm is described for optimizing a dictionary so that

the coherence of signals of interest can be maximized. The analysis in the remainder of this

section can be used to characterize the types of signals that a given dictionary is ine�cient

for representing, the realizations of a dictionary noise, so that we can determine what types of

\noise" we can remove from signals.

6.3 Invariant Measure of Group Invariant Dictionaries

The Gabor dictionary is a particular example of a dictionary that is invariant under the action

of group operators G = fG�g�2
. We proved in section 4 that with an appropriate choice

function the resulting matching pursuit commutes with the corresponding group operators. If

the matching pursuit commutes with G� , the renormalized matching pursuit map also satis�es
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the commutativity property

M(G�
~Rnf) = G�M( ~Rnf): (74)

The following proposition studies a consequence of this commutativity for the invariant measure

in a �nite dimensional space.

Proposition 6.1 LetM be a matching pursuit map which is ergodic with respect to an invariant

measure � de�ned on the unit sphere S with �(S) < +1. If there exists a subset of S of non-zero

�-measure such that (74) is satis�ed for all n 2 N, then for any G� 2 G and U � S

�(G�U) = �(U):

Proof: This result is a simple consequence of the Birkho� ergodic theorem. Indeed for any

U � � and almost any f 2 S whose residuals satisfy (74) we have

�(U) = �(S) lim
n!1

1

n

nX
k=1

�U (M
k
f): (75)

Hence

�(G�U) = �(S) lim
n!1

1

n

nX
k=1

�G�U(M
k
f):

Since Mk
G��1f = G��1M

k
f

�G�U(M
k
f) = �U (M

k
G��1f):

But since the limit (75) is independent of f for almost all f , we derive that �(G�U) = �(U).

2

This result trivially applies to the invariant measure of the three dimensional dictionary

studied in section 5. Since the three vectors fg0; g1; g2g are all separated by 60 degree angles,

this dictionary is invariant under the action of the rotation group composed of fI; G;G2g where
I is the identity and G the rotation operator that maps gi to gi+1. This implies that the

invariant measure of the normalized matching pursuit is invariant with respect to G. We thus

have the same invariant measure over the unit circle in each plane Pi.

A more interesting application of proposition 6.1 concerns dictionaries that are invariant

with respect to translation and frequency modulation groups. Let H = RN and let f�ng0�n<N
be the canonical (or Dirac) basis. The translation group is composed of fT kg0�k<N where T is

translation modulo N , T�n = �
(n+1) mod N

. The modulation group is composed of fF kg0�k<N
where F is the frequency modulation operator de�ned by F�n = e

i
2�n
N �n.

Suppose that the matching pursuit is an ergodic map which admits an invariant measure

and that it is implemented with a choice function that commutes almost everywhere with the

translation and frequency modulation group operators. Proposition 6.1 proves that the invariant

measure of M is also invariant with respect to translations T k and frequency modulations
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F
k . The invariance with respect to translations means that the discrete process associated to

this measure is stationary (modulo N). The invariance with respect to frequency modulation

operators F k implies that the discrete power spectrum of this process (the discrete Fourier

transform of the N point autocorrelation vector) is constant. In other words, the process is a

white stationary noise.

A simple example of a translation and frequency modulation invariant dictionary is con-

structed by aggregating the canonical basis of N discrete Diracs and the discrete Fourier or-

thonormal basis

D = f�n; eng0�n<N = fg
g
2�;
where en is the discrete complex exponential

en =
N�1X
k=0

e
i2�nk
N �k :

In the next section we construct a stochastic model to determine the matching pursuit invariant

measure for this dictionary.

6.4 An Invariant Measure Model

We now describe an method for determining the invariant measure for the discrete Dirac-Fourier

dictionary. We verify our model numerically at the end of the section.

Let g
n be the dictionary element selected on iteration n. The normalized matching pursuit

map is de�ned by

~Rn+1
f =

~Rnf� < ~Rnf; g
n > g
nq
1� j< ~Rnf; g
n > j2

: (76)

To �nd the invariant measure we consider the matching pursuit mapping for a realization of a

stochastic process Pn

P
n+1 =M(Pn) =

P
n� < P

n
; gPn > gPnp

1� j< Pn; gPn > j2
; (77)

where gPn is a random vector that takes its values over the dictionary D and satis�es

j< P
n
; gPn > j = sup


2�
j< P

n
; g
 > j: (78)

The invariant measure of the map corresponds to an equilibrium state in which < P
n+1

; g
 >

has the same distribution as < P
n
; g
 >. For any 
 2 �,

< P
n+1

; g
 > =
< P

n
; g
 >p

1� j< P; gPn > j2
� < P

n
; gPn >< gPn ; g
 >p

1� j< Pn; gPn > j2
: (79)

We recall that �(Pn) is de�ned to be j < P
n
; gPn > j. We suppose that in equilibrium the

random variable �(Pn) is constant and equal to its mean, �1. This is equivalent to supposing
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that the standard deviation of �(P ) is small when compared to the mean. This assumption has

been veri�ed numerically with several large dimensional dictionaries.

The determination of < P
n
; gPn >< gPn ; g
 > can be divided into three cases. If gPn = g
 ,

then < P
n+1

; g
 >= 0. If < g
 ; gPn >= 0 then (79) reduces to

< P
n+1

; g
 > =
< P

n
; g
 >p

1� �21
: (80)

Otherwise, we decompose

gPn =< gPn ; P
n
> P

n+ < gPn ; Q
n
> Q

n
:

Since Pn is a process whose realizations are on the unit sphere of H, this is equivalent to an

orthogonal projection onto a unit norm vector Pn plus the projection Q
n onto the orthogonal

complement of Pn. We thus obtain

< gPn ; g
 >=< gPn ; P
n
>< P

n
; g
 > + < gPn ; Q

n
>< Q

n
; g
 > : (81)

Inserting this equation into (79) yields

< P
n+1

; g
 > = < P
n
; g
 >

q
1� j< gPn ; P

n > j2 +A
n


 ; (82)

with

A
n


 = �< P
n
; gPn >< gPn ; Q

n
>< Q

n
; g
 >p

1� j< Pn; gPn > j2
:

We have from (81) that

jAn


j = �1j< gPn ; g
 > � < gPn ; P

n
>< P

n
; g
 > jp

1� �21
: (83)

If �1
2 � j< g
 ; gPn > j2, then because

j< P
n
; g
 > j � j< P

n
; gPn > j � �1;

we have to a �rst approximation that

jAn
 j =
�1j< gPn ; g
 > jp

1� �21
: (84)

Equation (79) is then reduced to

< P
n+1

; g
 > = < P
n
; g
 >

q
1� �21 +

�1j< gPn ; g
 > jei�n
p
1� �21

; (85)
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where �
n


is the complex phase of An



. The three possible new cases for the evolution of <

P
n
; g
 > are summarized by

< P
n+1

; g
 >=

8>>>>>><
>>>>>>:

<P
n
;g
>p

1��12
; if < g
 ; gPn >= 0;q

1� �12
< P

n
; g
 > +

�1j<g
 ;gPn>jei�
n

p

1��12

if �21 � j< g
 ; gPn > j
0; if g
 = gPn :

(86)

The Dirac-Fourier dictionary is an example of dictionary for which all above simpli�cation

assumptions are valid. We observe numerically that in the equilibrium state for a space of

dimension N , �1 is of the order of 1p
N

whereas the standard deviation of �(P ) is of the order

of 1
N
, which justi�es approximating �(P ) by its mean �1. Moreover, for any distinct g
 and

gPn in this dictionary, either both vectors are in the same basis (Dirac or Fourier) and

< g
 ; gPn >= 0;

or both vectors are in di�erent bases and

�
2
1 � j< g
 ; gPn > j =

1p
N
:

Thus, one of the approximations of (86) always applies. Because of the symmetrical positions

of the Dirac and the Fourier dictionary vectors, there is an equal probability that gPn belongs

to the Dirac or Fourier basis. For any �xed g
 , the �rst two updating equations of (86) thus

apply with equal frequency. We derive an average updating equation which incorporates both

equations for gPn 6= g
 ,

< P
n+2

; g
 > � < P
n
; g
 >=

�1ei�
n



p
N

: (87)

For n and 
 �xed, ei�
n

 is a complex random variable and the symmetry of the dictionary implies

that its real and imaginary parts have the same distributions with a zero mean. For 
 �xed,

we suppose that at equilibrium the phase random variables �n


are independent as a function of

n at equilibrium. The di�erence < P
n+2K

f; g
 > � < P
n
; g
 > is approximated by the sum of

K independent, identically distributed complex random variables of variance 1. By the central

limit theorem, the distribution of 1
2K

(< P
n+2K

f; g
 > � < P
n
; g
 >) tends to a complex

Gaussian random variable of variance 1. The inner products < P
n
; g
 > thus follow a complex

random walk as long as g
 6= gPn . The last case gPn = g
 of (86) occurs when < P
n
; g
 > is

the largest inner product whose amplitude we know to be

j< P
n
; gPn > j = �(P ) = �1:

At equilibrium, the distribution of < P
n
; g
 > is that of a random walk with an absorbing

boundary at �1.
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To �nd an explicit expression for the distribution of the resulting inner products < P
n
; g
 >,

we approximate the di�erence equation with a continuous time Langevin di�erential equation

d

dt
< P

t
; g
 >=

�1
2
p
N
�(t); (88)

where �(t) is a complex Weiner process with mean 0 and variance 1. The corresponding Fokker-

Planck equation [12] describes the evolution of the probability distribution p(z; t) of z =<

P
t
; g
 >. Since the phase of �(t) is uniformly distributed, the solution can be written p(z; t) =

p(r; t) where r = jzj and
@p(r; t)

@t
=
�12

8N
4p(r; t) (89)

which reduces to

4p(r) = 0 (90)

at equilibrium. The general solution to (90) with a singularity at r = 0 is

p(r) = C ln(r) +D:

The constants C and D are obtained from boundary conditions.

The inner products < P
n
; g
 > start at r = 0 and di�use outward until they reach r = �1,

at which time gPn = g
 , and < P
n
; g
 > returns to 0. The Langevin equation (88) describes

the evolution of the inner products before selection; the selection process is modeled by the

boundary conditions.

We can write (89) in the form of a local conservation equation,

@p(r; t)

@t
+
@J(r; t)

@r
= 0; (91)

where J , the probability current, is given by

J =
��12

8N
rp: (92)

The aggregate evolution of the inner products is described by a net probability current which


ows outward from a source at the origin and which is removed by a sink at r = �1. At each
time step, exactly one of the 2N dictionary elements is selected and set to 0. Thus, the strength

of both the sink and the source is 1
2N which implies that

lim
r!0

I
jzj=r

J � n̂ d` =
1

2N
(93)

I
jzj=�1

J � n̂ d` =
1

2N
(94)
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Integrating (90) we �nd that rpr(r) = C. By performing the line integrals in (93) and (94),

we �nd that C = �2
��1

2 . Thus, we have

p(r) =
�2

��12
ln(r) +D: (95)

We use additional constraints to �nd D and �1. Since all inner products lie in jrj < �1, we
must have Z

jzj<�1
p(z)dz = 1: (96)

Since the dictionary consists of two orthonormal bases and kP tk = 1, we have

X

2�

j< P
t
; g
 > j2 = 2:

The 2N inner products < P
t
; g
 > have last been set to zero at 2N di�erent times. We thus

assume the mean ergodic property

Ej< P
t
; g
 > j2 =

1

2N

X

2�

j< P
t
; g
 > j2 =

1

N

and hence Z
jzj<�1

z
2
p(z)dz =

1

N
: (97)

Inserting (95) into conditions (96) and (97) yields

�1 =
2p
N

and D =
2 ln�1
��12

:

Hence

p(r) =
2

��12
ln(

�1
r
): (98)

Figure 14 compares the graph of (98) for N = 4096 with an empirically determined density

function. The empirical density function was obtained by computing the Cesaro sums 1
n

P
n

k=0 <

R
k
f; g
 > where g
 is a Dirac element and f is a realization of a Gaussian white noise. The

�rst N terms were discarded to eliminate transient behavior and to speed the convergence

of the sum. We have aggregated the Cesaro sums for the members of the Dirac basis to

obtain a smoother plot. The invariant density function is invariant under translation due

to the translation invariance of the decomposition, so this aggregation does not a�ect our

measurements. The �gure shows an excellent agreement between the model and measured

values. The small discrepancy near the origin is due to the fact that the approximation of the

of the complex exponential term in (87) with a Gaussian is not valid for the �rst few iterations

after < P
n
; g
 > is set to 0. Figure 15 compares predicted values of �1 with empirically

determined values. These results justify a posteriori the validity our approximation hypotheses.
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Figure 14: A cross section of the function p(r; �) which describes the distribution of the inner

products < P
n
; g
 > along the � = 0 axis. The solid curve is determined empirically by

computing the Cesaro sums 1
n

P
n

k=0 < R
k
f; g
 >. The dashed curve is a graph of the predicted

density from our model.
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Figure 15: Measured versus predicted values of �1 for the Dirac-Fourier dictionary as a function

of the dimension N of the space H. The circles correspond to empirically determined values of

�1.

For this dictionary the average value �1 is only twice as large as the minimum �min. The

value �min is attained for the linear chirp

f =
N�1X
k=0

e
i2�k2

N �k;

where

�min = �(f) =
1p
N
:

The average value of �1 for this equilibrium process is much smaller than the value
q

logN
N

which

would be obtained from a white stationary Gaussian noise. This shows that the realizations of

the dictionary noise have energy that is well spread over the dictionary elements.

7 Comparison of Non-orthogonal and Orthogonal Pursuits

In this section we compare the accuracy and stability of the non-orthogonal and orthogonal pur-

suit algorithms. Our numerical experiments show that the convergence rates of the algorithms

are comparable for the coherent portions of signal expansions. When the number of terms in

the expansion is large, however, the orthogonal pursuit algorithm converges much more quickly
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Figure 16: log kRnfk as a function of n. The top curve shows the decay of kRnfk for a

non-orthogonal pursuit and the bottom for an orthogonal pursuit.

than the non-orthogonal pursuit. Our experiments also show that the expansions produced by

both pursuits are well-conditioned for the coherent portions of signals. Although [7] showed

that it is possible for stability problems to occur with orthogonal pursuits, we do not observe

instabilities in our experiments.

7.1 Accuracy of Non-orthogonal and Orthogonal Pursuit Approximations

To compare the performance of the orthogonal and non-orthogonal pursuits, we segmented

a digitized speech recording into 512-sample pieces and decomposed the pieces using both

algorithms. The dictionary used was the discretized Gabor dictionary described in section 3.4.

Figure 7.1 shows for both algorithms the decay of the residual kRnfk as a function of n

for a 512 sample speech segment. When the number of terms in the expansion is close to

the dimension of the signal space, we see that the orthogonal pursuit residuals converge very

rapidly to 0. The non-orthogonal pursuit residuals, on the other hand, converge exponentially

with a slow rate when n is large. We see, then, that orthogonal pursuits yield much better

approximations when the number of terms in the expansion is large.

In the initial stages of the expansion, however, the performance of the two algorithms is

similar. The reason is that for the early part of the expansion the selected vectors are nearly

orthogonal, so the orthogonalization step does not contribute greatly. This near-orthogonality

comes from the fact that for both pursuits < R
n+1

f; g
n >= 0, so

j< R
n+1

f; g
 > j2 � kRn+1
fk2(1� j< g
; g
n > j2): (99)
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The vector g
n+1 is chosen by �nding the 
 2 � for which the left hand side of (99) is maximized.

If the vector g
 contains a component in the direction of g
n , then this portion of g
 does not

contribute to the product j< R
n+1

f; g
 > j. Hence there is a penalty against selecting dictionary
elements g
 for which j< g
 ; g
n > j is large. If j< g
n ; g
n+1 > j = 0, then we also have

j< R
n+2

f; g
 > j2 � kRn+2
fk2(1� j< g
 ; g
n > j2)(1� j< g
 ; g
n+1 > j); (100)

so we have a similar penalty against selecting a g
n+2
which correlates with either g
n or g
n+1

,

and so on. Hence, the initially selected vectors tend to be orthogonal. Successive iterations of

the pursuit gradually reintroduce a g
n component (unless < g
n ; g
n+k >= 0), so as k increases,

the vectors g
n+k become more correlated with g
n .

These nearly-orthogonal elements which comprise the initial terms of the expansion corre-

spond to the signal's coherent structures, the portions of the signal which are well-approximated

by dictionary elements. For many applications, we are interested in only the coherent portion of

the expansion. Although for large expansions the orthogonal pursuit produces a much smaller

error, the di�erence between the two algorithms is not great for the coherent portion of the

expansion. Hence for coherent expansions we can realize a large computational savings by using

the faster non-orthogonal pursuits.

To compare the accuracy of approximations generated by the two algorithms, we partitioned

a speech recording into 512-sample segments and decomposed the segments using an orthogonal

and a non-orthogonal pursuit with the discretized Gabor dictionary. The coherent portions of

the non-orthogonal pursuit expansions were determined using by comparing a running average

of the �(Rnf)'s to �1, as described in section 6.2. For the discretized Gabor dictionary with

512 samples, we �nd that �1 � 0:17. Selected dictionary elements are deemed to be coherent

until a running average of 5 kRnfk's is within 2 percent of �1. We denote by C(f) the number

of coherent structures in f .

The average number of coherent structures for the 274 speech segments tested was 72.7.

For the coherent portion of the signals, the norm of the residual generated by the orthogonal

pursuit was on average only 18.5 percent smaller than the norm of the residual for the matching

pursuit. More precisely, let Rnf denote the non-orthogonal pursuit residual, and let Rnof denote

the orthogonal pursuit residual. For the speech segments tested, the ratio kRC(f)
fk

kRC(f)
o fk

ranged from

0.864 to 1.771 with an average of 1:185 and a standard deviation of 0.176. We see, then, that

for the coherent part of the signal, the bene�ts of the orthogonalization are not large.

The computational cost of performing a given number of iterations of an orthogonal pursuit

is much higher than for the non-orthogonal pursuit, as we showed in section 3. The implementa-

tion of the pursuit used requires I = O(1) operations to compute the inner products < g
 ; g
0 >

and on average, Z = N = 512 of these inner products are non-zero. The non-orthogonal ex-

pansion of the coherent part of the signal thus requires roughly 4�104I operations whereas the

orthogonal expansion requires roughly 2�106I operations. The cost is two orders of magnitude

higher for a 20 percent improvement in the error.

The cost of the orthogonal pursuit can be reduced somewhat due to its improved convergence

properties. Fewer orthogonal iterations are required to reduce the norm of the residual to a
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given value. For the coherent portion of the tested speech segments, however, this savings is

small. In our experiments, the orthogonal pursuit required an average of C(f)� 4 iterations to

obtain an error equivalent to that of the non-orthogonal pursuit with C(f) iterations.

7.2 Stability of Non-orthogonal and Orthogonal Pursuit Expansions

Orthogonal pursuits yield expansions of the form

f =
nX
k=0

�kuk + R
n
f (101)

where the uk 's are orthogonalized dictionary elements. When the selected set of dictionary

elements is degenerate (when the set does not form a Riesz basis for the space it spans), these

expansions cannot be converted into expansions over the dictionary elements g
 . In [7] it is

proved that it is indeed possible for the set fg
kg of vectors selected by an orthogonal pursuit

to be degenerate, even when the dictionary contains an orthonormal basis. We now examine

numerically the stability of the collection of dictionary elements selected by orthogonal and

non-orthogonal pursuits.

To compare the degeneracy of the sets of elements selected by the two algorithms, we

computed the 2-norm condition number for the Gram matrix Gi;j =< g
i ; g
j > for twenty

128-sample speech segments. As we discussed above, the initially selected coherent structures

are roughly orthogonal and form a well-conditioned set for both pursuits. As the pursuit

proceeds, the set selected by the non-orthogonal pursuit grows more and more singular, while

the set selected by the orthogonal pursuit stays well-conditioned. The average log of the 2-norm

condition numbers for the twenty samples are listed below.

Pursuit log10(�(C)) log10(�(128))

Non-orthogonal 1.53 12.2

Orthogonal 0.621 2.09

We see that for the non-orthogonal pursuit the condition number of the Gram matrix is

small for the coherent portion of the signal (roughly the �rst 20 vectors in the expansion).

The small condition number is the result of the penalty (99). As components of previously

selected vectors are reintroduced into the residuals, the penalty (99) against selecting a g
n+k

that correlates with g
n decreases as k increases. Hence, as the number of iterations becomes

close to the dimension of the signal, the set grows more and more singular.

For the orthogonal pursuit, on the other hand, we have

j< R
n+1

f; g
 > j2
kRn+1fk2 � k(I � Pn)g
k2; (102)

where Pn is the orthogonal projection onto the space spanned by g
0 : : : g
n . Hence there is

a penalty against selecting for g
n+1 a g
 which correlates strongly with any of the previously

selected elements. As we see in the table, the condition numbers of the Gram matrices for the

orthogonal pursuit are correspondingly smaller.
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8 Conclusion

The problem of optimally approximating a function with a linear expansion over a redundant

set is a computationally intractable one. The greedy matching pursuit algorithms provide a

means of computing compact approximations quickly. The orthogonalized matching pursuit

algorithm converges in a �nite number of steps in �nite dimensional spaces. The much faster

non-orthogonal matching pursuits yield comparable expansions for the coherent portion of a

signal.

Renormalized matching pursuits possess local topological properties like those of chaotic

maps, including local separation of points, and local mixing of the domain. We have shown

that for a particular dictionary, the renormalized pursuit is in fact chaotic and ergodic. Er-

godic pursuits possess invariant measures from which we obtain a statistical description of the

residuals.

For dictionaries which are invariant under the action of a group operator, we can construct a

choice function which preserves this group invariance. We can deduce properties of the invariant

measure of a pursuit with such a dictionary; in particular, the invariant density function of a

translation and modulation invariant pursuit will be stationary and white.

Numerical experiments with the Dirac-Fourier dictionary show that the asymptotic residuals

of the pursuit converge to dictionary noise, the realizations of a white, stationary process. The

asymptotic convergence rate is slow, and the asymptotic inner products < R
n
f; g
 > essentially

perform a random walk until they reach a constant �1 and are selected. With an appropriate

dictionary, the expansion of a signal into its coherent structures provides a close approximation

with a small number of terms.
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